Published online by Cambridge University Press: 06 October 2009
The collective oscillations of a condensate at zero temperature are well described by the solutions of the linearized time-dependent Gross–Pitaevskii (GP) equation of motion for the condensate wavefunction Φ(r, t). At finite temperatures, however, the condensate dynamics is modified by interactions with the noncondensate atoms that comprise the thermal cloud. To account for these interactions in detail involves a sophisticated numerical analysis, which will be described in Chapter 11. However, some qualitative understanding of the effect of collisions between the condensate and noncondensate components can be gained by treating the thermal cloud within an approximation that ignores its dynamics. This approximation, referred to as the static thermal cloud approximation, is the topic of the present chapter. As explained in more detail below, it is defined by the assumption that the condensate moves in the presence of a thermal cloud that remains in a state of thermal equilibrium. Thus, if the condensate is induced to oscillate, it initially departs from equilibrium with the thermal cloud, but collisions lead to a damping of the condensate oscillation and ultimately equilibrate the two components. This collisional damping is in addition to the usual Landau and Beliaev damping, which is present even in the “collisionless” regime.
The approximate version of the fully coupled ZNG equations to be discussed here provides the simplest finite-temperature extension of the theory of condensate dynamics based on the usual GP equation. The extent to which the treatment gives a reasonable first approximation will be examined in Chapter 11. It will be shown that the static thermal cloud approximation does provide a qualitative understanding of the damping of modes in which the condensate is the main participant.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.