Published online by Cambridge University Press: 05 January 2012
In this chapter,we shall analyze the particular case of an atom interacting with a laser pulse whose duration is sufficiently long, so that the evolution of the atom in the laser field is adiabatic. When this condition is fulfilled, the atom can be considered to interact with a monochromatic laser field. As a consequence, the Hamiltonian of the system is periodic in time, and the Floquet theory [1] can be used to solve the time-dependent Schrödinger equation (TDSE) non-perturbatively.
We begin in Section 4.1 by considering the Hermitian Floquet theory. We first derive the Floquet theorem for a monochromatic, spatially homogeneous laser field and show that the solutions of the TDSE correspond to dressed states having real quasi-energies, which can be obtained by solving an infinite system of time-independent coupled equations. We then generalize the Floquet theory to multicolor laser fields and to “non-dipole” laser fields which are not spatially homogeneous. In Section 4.2, the Floquet theory is applied to study the dynamics of a model atom having M discrete levels interacting with a monochromatic laser field. In this case, the coupling between the bound and continuum atomic states is neglected.We analyze the relationship between the Floquet theory and the rotating wave approximation, and examine the perturbative limit of the Floquet theory. We also consider the population transfer between Floquet dressed states.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.