Published online by Cambridge University Press: 03 May 2010
Chapter overview
Polynomial expressions and linear systems are found in a wide range of applications: perhaps most fundamentally, Taylor's theorem states that any differentiable function can be approximated by a polynomial. Polynomial approximations are used extensively in computer graphics to model geometric objects. Many of the fundamental digital signal processing transformations are modeled as linear systems, including FIR filters, DCT and H.264 video compression. Cryptographic systems, in particular, those that perform exponentiation during public key encryption, are amenable to modeling using polynomial expressions. Finally, address calculation during data intensive applications requires a number of add and multiply operations that grows larger as the size and dimension of the array increases. This chapter describes these and other applications that require arithmetic computation. We show that polynomial expressions and linear systems are found in a variety of applications that are driving the embedded systems and high-performance computing markets.
Approximation algorithms
Polynomial functions can be used to approximate any differentiable function. Given a set of points, the unisolvence theorem states that there always exists a unique polynomial, which precisely models these points. This is extremely useful for computing complex functions such as logarithm and trigonometric functions and forms the basis for algorithms in numerical quadrature and numerical ordinary differential equations. More precisely, the unisolvence theorem states that, given a set of n + 1 unique data points, a unique polynomial with degree n or less exists.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.