Published online by Cambridge University Press: 11 April 2011
Basic Object: The complex numbers
Basic Map: Analytic functions
Basic Goal: Equivalences of analytic functions
Complex analysis in one variable studies a special type of function (called analytic or holomorphic) mapping complex numbers to themselves. There are a number of seemingly unrelated but equivalent ways for defining an analytic function. Each has its advantages; all should be known.
We will first define analyticity in terms of a limit (in direct analogy with the definition of a derivative for a real-valued function). We will then see that this limit definition can also be captured by the Cauchy-Riemann equations, an amazing set of partial differential equations. Analyticity will then be described in terms of relating the function with a particular path integral (the Cauchy Integral Formula). Even further, we will see that a function is analytic if and only if it can be locally written in terms of a convergent power series. We will then see that an analytic function, viewed as a map from R2 to R2, must preserve angles (which is what the term conformal means), provided that the function has a nonzero derivative.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.