Published online by Cambridge University Press: 05 November 2014
Approximation of eigen values and eigenvectors
Many realistic problems that arise in theoretical physics lead to equations which cannot be given exact general solutions. Therefore, many attempts have been made to produce satisfactory methods to provide approximate solutions. The most common ones search for solutions in terms of power series and in terms of asymptotic expansions. The main idea behind approximation methods is to try to find approximate solutions of a given system by means of exact solutions of an approximate system (a ‘nearby’ system). We start with the eigenvalue equation associated with the Hamiltonian H and consider an approximating one, say H0, whose equations of motion can be explicitly solved. We introduce an interpolating family of Hamiltonians Hε = H0 + εH1 such that, for a given value of ε, say ε, Hε ≡ H. Both eigenvalues and eigenvectors for Hε may be expanded as a series in ε and solved order by order. The simplest example to illustrate what we have in mind is provided by a second-order algebraic equation, e.g.
x2 − 3.03x + 2.02 = 0.
This equation may be written by means of an interpolating family
x2 − 3(1 + ε)x + 2(1 + ε) = 0,
which yields the equation we want to solve when ε = 10−2. One can consider the approximate equation to be given by ε = 0, i.e.
x2 − 3x + 2 = 0.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.