Book contents
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
20 - Outline of theory of intermittently cavitating propellers
Published online by Cambridge University Press: 07 May 2010
- Frontmatter
- Contents
- Preface
- Notation
- Abbreviations
- 1 Brief review of basic hydrodynamic theory
- 2 Properties of distributions of singularities
- 3 Kinematic boundary conditions
- 4 Steady flows about thin, symmetrical sections in two dimensions
- 5 Pressure distributions and lift on flat and cambered sections at small angles of attack
- 6 Design of hydrofoil sections
- 7 Real fluid effects and comparisons of theoretically and experimentally determined characteristics
- 8 Cavitation
- 9 Actuator disc theory
- 10 Wing theory
- 11 Lifting-line representation of propellers
- 12 Propeller design via computer and practical considerations
- 13 Hull-wake characteristics
- 14 Pressure fields generated by blade loading and thickness in uniform flows; comparisons with measurements
- 15 Pressure fields generated by blade loadings in hull wakes
- 16 Vibratory forces on simple surfaces
- 17 Unsteady forces on two-dimensional sections and hydrofoils of finite span in gusts
- 18 Lifting-surface theory
- 19 Correlations of theories with measurements
- 20 Outline of theory of intermittently cavitating propellers
- 21 Forces on simple bodies generated by intermittent cavitation
- 22 Pressures on hulls of arbitrary shape generated by blade loading, thickness and intermittent cavitation
- 23 Propulsor configurations for increased efficiency
- Appendices
- Mathematical compendium
- References
- Authors cited
- Sources of figures
- Index
Summary
Cavitation on ship propellers has been the bane of naval architects and ship operators since its first discovery on the propellers of the British destroyer Daring in 1894. Primary interest in propeller-blade cavitation was, for many years, centered upon the attending blade damage and the degradation of thrust arising from extensive, steady cavitation. It was not until the advent of the rapid growth in the size of merchant ships in the past three decades (with concurrent marked increases in blade loading) that extensive, intermittent or unsteady cavitation appeared and was indicted as the cause of large forces exciting highly objectionable hull vibration. Efforts in the modeling of hull wakes in water tunnels date back to about 1955 (cf. van Manen (1957b)) when tests of propeller models in fabricated axially non-uniform flows were being conducted at Maritime Research Institute Netherlands (MARIN), National Physical Laboratory (NPL) and Hamburgische Schiffbau–Versuchsanstalt (HSVA). Non-stationary blade cavities were observed then but there seem to have been no notice or measurement of unsteady near-field pressures attending unsteady cavitation until the experimental work of Takahashi & Ueda (1969). They measured pressures at one point above a propeller in a water tunnel in uniform and non-uniform flow and gave a brief contribution to the 12th International Towing Tank Conference (ITTC) in Rome in 1969. Their principal results are shown in Figure 20.1, where it is seen that the pressure amplitudes increased dramatically with reduced cavitation number.
- Type
- Chapter
- Information
- Hydrodynamics of Ship Propellers , pp. 387 - 410Publisher: Cambridge University PressPrint publication year: 1993