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Throughout this Article, we use the following notations for the triangle
ABC

•  and  are the lengths of the sides ,  and , respectively,a, b c BC CA AB
•  denotes the area of triangle ,� ABC
•  and  are the lengths of the altitudes through the vertices ,

and , respectively,
ha, hb hc A B

C
•  and  are the lengths of the medians through the vertices ,

and , respectively.
ma, mb mc A B

C

1.  Introduction
Roland Weitzenböck, an Austrian mathematician, first proposed the

following geometric inequality (see [1, 2, 3, 4, 5, 6]):

a2 + b2 + c2 ≥ 4 3�. (1)
Weitzenböck's inequality is an important inequality in the system of
geometrical inequalities.

The following inequality of Finsler and Hadwiger (see [1, 2, 3, 4, 5, 6])

a2 + b2 + c2 ≥ 4 3� + (b − c)2 + (c − a)2 + (a − b)2

seems to be a refinement of Weitzenböck's inequality, but it is actually
equivalent to it [6]. A direct refinement of both inequalities is

a2 + b2 + c2 ≥ 4� 3 +
R − 2r

R
+ (b − c)2 + (c − a)2 + (a − b)2 ,

which is equivalent to Kooi's inequality [7, 8].
It is well known that , where

is the centroid of triangle , so we can rewrite Weitzenböck's inequality
(1) as

1
3 (a2 + b2 + c2) = GA2 + GB2 + GC2 G
ABC

GA2 + GB2 + GC2 ≥
4�

3
.

Actually for any interior point  we have P

PA2 + PB2 + PC2 ≥ GA2 + GB2 + GC2,
so the following inequality holds

PA2 + PB2 + PC2 ≥
4�

3
and we shall improve this inequality in the following theorem.
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Theorem (main theorem): Let  be a triangle. Let  be the interior point
of triangle . Let ,  and  be the midpoints of sides ,  and ,
respectively. Let  and  be the circumcentre and circumradius of triangle

, respectively. Then

ABC P
ABC A′ B′ C′ BC CA AB

O R
ABC

PA2 + PB2 + PC2 ≥
4�

3 (1 +
OP2

3R2 ) . (2)

 PA2 + PB2 + PC2 ≥
4�

3
 · max {PA + PA′

ha
,

PA + PB′
hb

,
PC + PC′

hc
} . (3)

Remark: When  coincides with , the centroid of triangle , the
inequality (2) becomes

P G ABC

GA2 + GB2 + GC2 ≥
4�

3 (1 +
OP2

3R2 ) ≥
4�

3
,

and then, using , we getGA2 + GB2 + GC2 = 1
3 (a2 + b2 + c2)

a2 + b2 + c2 ≥ 4 3�,
which is Weitzenböck’s inequality.

The inequality (3) becomes

GA2 + GB2 + GC2 ≥
4�

3
 · max {GA + GA′

ha
,

GA + GB′
hb

,
GC + GC′

hc
}

=
4�

3
 · max {ma

ha
,

mb

hb
,

mc

hc
} ≥

4�
3

or
a2 + b2 + c2 ≥ 4 3�,

which is Weitzenböck’s inequality.
Thus we see that (2) and (3) are generalisations of Weitzenböck's

inequality.

2.  Proof of the main theorem
In this section, we give solutions to the inequalities (2) and (3) in turn.

First of all, we would like to introduce the following lemmas:

Lemma 1: Let  be the circumradius of triangle . Then,R ABC

3 3R2 ≥ 4�.

Proof: Multiplying the Euler's inequality  and the well-known
, where  is the semiperimeter of triangle

, we have

R ≥ 2r
3 3R ≥ 2s s = 1

2 (a + b + c)
ABC

3 3R2 ≥ (2a) (2s) = 4�.
This completes proof of Lemma 1.
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Lemma 2 (Area of pedal triangle; see [9, 10]): Let  be a triangle. Let
be the interior point of triangle . Let  and  be the circumcentre and
circumradius of triangle , respectively. Let  be pedal triangle of
with respect to triangle ; and  be the area of triangle . Then

ABC P
ABC O R

ABC DEF P
ABC �DEF DEF

�DEF =
R2 − OP2

4R2
 · �,

(see proof at [9, 10]).

Lemma 3: Given triangle . ThenABC

a2 + b2 + c2 ≥ 2 3a · ma, (4)

 3 (b2 + c2) − a2 ≥ 2 3a · ma. (5)
Equality in (4) holds if, and only if,  is an equilateral triangle. Equality
in (5) holds if, and only if,  and .

ABC
AB = AC ∠A = 2

3π

A

B C

S

A′

FIGURE 1: Proof of Lemma 3

Proof: Using the AM-GM inequality and the formula for medians, we have

2a · 
2
3

ma ≤ a2 +
4
3

m2
a = a2 +

2 (b2 + c2) − a2

3
=

2
3

(a2 + b2 + c2) .

Therefore

a2 + b2 + c2 ≥ 2 3a · ma.
Equality holds if, and only if,  is an equilateral triangle.ABC
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Let  be the reflection of  in the midpoint  of . Applying
inequality (4) to triangle  with median , we obtain

S A A′ BC
SAC CA′ = 1

2a

AS2 + SC2 + CA2 ≥ 2 3AS · 
a
2

or
4m2

a + b2 + c2 ≥ 2 3a · ma
or

3 (b2 + c2) − a2 ≥ 2 3a · ma.
Equality holds if, and only if,  is an equilateral triangle or
and . This finishes the proof.

SAC AB = AC
A = 2

3π

We return to the main theorem. Let  be the pedal triangle of  with
respect to triangle ; and  be the area of triangle . We see that
triangle  is inscribed in circle diameter , and denote by  the area of
triangle . Applying Lemma 1 to triangle , we get

DEF P
ABC �DEF DEF

AEF PA �a
AEF AEF

3 3 (PA
2 )2

≥ 4�a (6)

Similarly for triangles  and BFD CDE

3 3 (PB
2 )2

≥ 4�b (7)

and

3 3 (PC
2 )2

≥ 4�c. (8)

Summing the inequalities (6), (7) and (8), we deduce that

3 3
4

(PA2 + PB2 + PC2) ≥ 4 (�a + �b + �c) = 4 (� − �DEF) .  (9)

Applying Lemma 2 to (9), we see that

3 3
4

(PA2 + PB2 + PC2) ≥ 4(� −
R2 − OP2

4R2
 · �) =

3R2 + OP2

R2
 · �,

which is equivalent to

PA2 + PB2 + PC2 ≥
4�

3 (1 +
OP2

3R2 ) .

The equality holds if, and only if, triangle  is equilateral and  coincides
with its centre. To continue, we apply Lemma 3 (inequality (5)) to triangle

 with median ; then

ABC P

PBC PA′

3 (PC2 + PB2) − a2 ≥ 2 3a · PA′,
which is equivalent to

3 (PC 2+PB2) ≥ 2 3a · PA′ + a2. (10)
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A

E

B′C′

F

P

B D A′ C

FIGURE 2: Proof of main theorem

Adding  to each side of (10) and now applying the AM-GM inequality
to give , we have

3PA2

a2 + 3PA2 ≥ 2 3a · PA

3(PA2 + PB2 + PC2) ≥ 2 3a · PA′ + a2 + 3PA2 ≥ 2 3a · PA′ + 2 3a · PA. (11)
Also, we have

2 3a · PA′ + 2 3a · PA = 2 3a (PA +  PA′)

 = 2 3a · ha · 
PA +  PA′

ha
(12)

 = 4 3� · 
PA +  PA′

ha
.

From (11) and (12), it follows that

PA2 + PB2 + PC2 ≥
4�

3
 · 

PA + PA′
ha

.

Similarly with vertices  and , we getB C

PA2 + PB2 + PC2 ≥
4�

3
 · max {PA + PA′

ha
,

PB + PB′
hb

,
PC + PC′

hc
} .

The equality holds if, and only if, triangle  is equilateral and  coincides
with its centre. That completes the proof of the main theorem.

ABC P

Remark: Actually, we do not need  to be an interior point of triangle
for the inequality (3) and the same goes for the proof.

P ABC

3.  Weitzenböck's inequality via triangle identity
In this section, we give a further extension for the Weitzenböck's

inequality using the identity of the triangle. First, we recall the definition of
two Fermat points or isogonic centres in a triangle.
Definition (See [10, 11, 12]): Given triangle , construct the equilateral
triangles ,  and  having bases ,  and , respectively,

ABC
BCA′ CAB′ ABC′ BC CA AB
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outwardly (inwardly) from triangle . The lines ,  and  concur
in the first (the second) Fermat point  ( ) of triangle .

ABC AA′ BB′ CC′
F1 F2 ABC

The author has also proposed an extension of Weitzenböck’s inequality
under the identity as follows (see [14]):

a2 + b2 + c2 = 4� 3 +
4
3

 · 
OH2

F1F 2
2

≥ 4 3�, (13)

where , ,  and  are the circumcentre, the orthocentre, the first Fermat
point and the second Fermat point, respectively.

O H F1 F2

Here we shall suggest a method to prove (13) using Maple with the
available barycentric coordinates formulae for the two points  and . The
first and second Fermat points  and  are Kimberling centre  and

, respectively (see [12, 13, 14, 15]), with barycentric coordinates

F1 F2
F1 F2 X (13)

X (14)

F1 (a4 − 2 (b2 − c2)2
+ a2 (b2 + c2 + 4 3�) , … , … ) (14)

and

F2 (a4 − 2 (b2 − c2)2
+ a2 (b2 + c2 − 4 3�) , … , … ) . (15)

Using (14), (15) and the formula for distance in areal coordinates
(barycentric coordinates) [16] with Maple's expression reduction support,
we obtain

F1F
2
2 =

4
3

 · 
9a2b2c2 − 16� (a2 + b2 + c2)

(a2 + b2 + c2)2 − 48�2

or

F1F
2
2 =

4
3

 · 
16�2 (9R2 − (a2 + b2 + c2))

(a2 + b2 + c2)2 − 48�2
=

4
3

 · 
OH2

(a2 + b2 + c2

4� )2 − 3

where  is the circumradius of triangle . Hence, we easily obtain
equation (13).

R ABC

4.  Conclusion
We have replaced the sum of squares  by

, from which we come up with the idea of expanding
instead because  becomes any point . Since the Finsler-Hadwiger
inequality follows from similar inequality,

1
3 (a2 + b2 + c2)

(GA2 + GB2 + GC2)
G P

PA2 + PB2 + PC2 ≥
4�

3
+

(a − b)2 + (b − c)2 + (c − a)2

3
,

the open question is can we work similarly for this form of the Finsler-
Hadwiger inequality?

Acknowledgements: The author would like to thank the referee for carefully
reading this manuscript and for making important comments which substantially

https://doi.org/10.1017/mag.2023.92 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.92


SOME GENERALISATIONS OF WEITZENBÖCK'S INEQUALITY 411

helped to improve the paper. The author is grateful to the anonymous referee for
his enthusiastic support during the preparation of the manuscript.

References
1. R. Weitzenböck, Über eine Ungleichung in der Dreiecksgeometrie,

Math. Zeitschr. 5 (1919) pp. 137-146.
2. D. Pedoe, On some geometric inequalities, Math. Gaz. 26 (December

1942) pp. 202-208.
3. C. Alsina and R. B. Nelsen, Geometric Proofs of the Weitzenböck book

and Hadwiger-Finsler inequalities, Maths. Mag. 81 (June 2008) pp. 216-
219.

4. A. Engel, Problem-solving strategies, Springer-Verlag (1998).
5. P. Finsler, H. Hadwiger, Einige Relationen im Dreieck, Commentarii

Mathematici Helvetici, 10 1, (1937) pp. 316-326.
6. M. Lukarevski, The circummidarc triangle and the Finsler-Hadwiger

inequality, Math. Gaz. 104 (July 2020) pp. 335-338.
7. M. Lukarevski, D. S. Marinescu, A refinement of the Kooi's inequality,

Mittenpunkt and applications, J. Inequal. Appl. 13(3), (2019) pp. 827-832.
8. M. Lukarevski, A simple proof of Kooi's inequality, Math. Mag. 93 (3),

(2020) p. 225.
9. A. Bogomolny, Sides and area of pedal triangle, Interactive mathematics

miscellany and puzzles, available at 
https://www.cut-the-knot.org/triangle/PedalTriangle.shtml

10. G. Leversha, The geometry of the triangle, UKMT (2013).
11. R. A. Johnson, Advanced Euclidean Geometry (Modern Geometry),

Dover, 1960, pp. 135-141.
12. Wolfram. MathWorld, Fermat Points accessed March 2023 at

https://mathworld.wolfram.com/FermatPoints.html
13. C. Kimberling, Encyclopedia of triangle centers, X(13) and X(14) at

http://faculty.evansville.edu/ck6/encyclopedia/ETC.html
14. Q. H. Tran (buratinogigle), Relation with Fermat points, AoPS at 

https://artofproblemsolving.com/community/g4h1968407
15. C. Kimberling, Triangle centers and central triangles, Congr. Numer.,

(1998) pp. 67-68.
16. J. A. Scott, Some examples of the use of areal coordinates in triangle

geometry, Math. Gaz., 83 (November 1999), pp. 472-477.
10.1017/mag.2023.92 ©  The Authors, 2023 QUANG HUNG TRAN
Published by Cambridge University Press           High school for Gifted Students,
on behalf of The Mathematical Association       Hanoi University of Science,

 Vietnam National University at Hanoi, 182 Luong The Vinh,
 Thanh Xuan, Hanoi, Vietnam.

e-mail: hungtq@vnu.edu.vn

https://doi.org/10.1017/mag.2023.92 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.92

