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Abstract
Collective decision-making by a swarm of robots is of paramount importance. In particular, the problem of collec-
tive perception wherein a swarm of robots aims to achieve consensus on the prevalent feature in the environment.
Recently, this problem has been formulated as a discrete collective estimation scenario to estimate their proportion
rather than deciding about the prevalent one. Nevertheless, the performance of the existing strategies to resolve this
scenario is either poor or depends on higher communication bandwidth. In this work, we propose a novel decision-
making strategy based on maximum likelihood estimate sharing (MLES) to resolve the discrete collective estimation
scenario. Experimentally, we compare the tradeoff speed versus accuracy of MLES with state-of-the-art methods
in the literature, such as direct comparison (DC) and distributed Bayesian belief sharing (DBBS). Interestingly,
MLES achieves an accurate consensus nearly 20% faster than DBBS, its communication bandwidth requirement is
the same as DC but six times less than DBBS, and its computational complexity is O(1). Furthermore, we inves-
tigate how noisy sensors affect the effectiveness of the strategies under consideration, with MLES showing better
sustainability.

1. Introduction
In nature, social insects and animals such as ants, bees, and birds are fascinating creatures that exhibit a
sort of swarm intelligence through their behavior as a group. Inspired by these creatures, swarm robotics
aims to coordinate a large number of robots. In contrast to multirobot systems, swarm robotics systems
are characterized by local sensing and communication capabilities and decentralized control [1]. The
desired properties of a swarm robotics system are robustness, scalability, and flexibility. Robustness is
the ability to accomplish the task at hand despite the malfunction of some robots, scalability is coping
with a large swarm size without affecting performance, and flexibility is the capacity to adapt the swarm
behavior to the nature of the task [2–5].

One of the most promising applications of swarm robotics is environmental monitoring. This appli-
cation requires the discovery and evaluation of wildfires as soon as possible. We formulate this problem
in the context of collective decision-making, where the swarm of robots must agree about the features
present in the environment (e.g., wildfire, water, vegetation). Collective decision-making has been stud-
ied extensively within the swarm robotics community [6–9]. This interest comes from the necessity of
achieving agreement between the swarm members to accomplish tasks beyond the capability of one
member of the swarm. One robot, through its sensing capabilities, can locally estimate the environment.
However, features generally are spread over a large area. Therefore, it is clear that having a swarm of
robots exploring the environment together is more beneficial.

Collective decision-making is of paramount importance for a swarm of robots [10, 11]. In particu-
lar, consensus achievement wherein the swarm objective is to make a common choice among several
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Figure 1. Overview of the arena with a swarm of 20 simulated e-puck robots.

options. Valentini et al. [7] divided consensus achievement problems into discrete and continuous. In the
former, the number of options is finite (e.g., site selection). In the latter, the number of options is infinite
(e.g., flocking directions). The authors introduced the best-of-n problem as an abstraction of the struc-
ture and logic of discrete consensus achievement problems where n represents the number of options.
In their proposed taxonomy, the best-of-n problem is categorized according to the option’s quality and
cost. In this work, we investigate the collective perception problem in which the option qualities are
asymmetric and the option costs are symmetric.

In the collective perception problem (see Fig. 1), a robot swarm task is to identify the prevalent fea-
ture among different features available in the environment. An abstraction of this scenario is described
by Valentini et al. [12], an arena that contains two colors representing the features present in the environ-
ment. The objective of the swarm is to identify the best option (i.e., The color with the highest fill ratio
in the arena). This scenario has served as a benchmark for different approaches where the performance
is mainly assessed by a tradeoff between speed and accuracy to reach a consensus on the best option.

Several challenges characterize the collective perception problem, despite the prominent findings.
Self-organization using positive feedback is one ingredient [12–14]. Positive feedback is the process
of influencing others’ opinions about the best option when we are confident about our own opinion.
However, this can lead to the spread of a wrong opinion, and the challenge is to prevent its propagation.
Another challenge is spatial correlations between observations, as shown by Bartashevich et al. [15], that
the difficulty of the collective perception problem is not related mainly to the difference in the fill ratio
between the colors but also to the distribution of the colors in the arena. The more spatial concentration
of the features, the more time it takes for the swarm to achieve consensus about the best option.

Most of the literature on collective perception by a swarm of robots focused on selecting the best
option/color in the environment rather than estimating its ratio. So far, the only work that tackled it as
a discrete collective estimation problem is the work of Shan et al. [16] using Bayesian multihypothesis
testing, wherein the robots try to find the range of the fill ratio corresponding to the correct fill ratio
of the features in the environment. However, their method requires a larger bandwidth since each robot
communicates multiple hypotheses about the fill ratio to its neighbors [17].

To tackle these limitations, we propose maximum likelihood estimate sharing (MLES) as a novel
decentralized and distributed method to resolve the collective estimation problem by estimating the
option’s quality using the maximum likelihood estimation technique (MLE) and introducing a self-
organized mechanism for modulating positive feedback. Its minimal memory, computational, and
communication bandwidth requirements make it suitable for minimalist robot swarms. Furthermore, we
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evaluate our method and compare its performance with the existing methods in the literature. It demon-
strates outperforming performance in terms of tradeoff speed-vs-accuracy and better sustainability to
noise.

This paper is organized as follows. Section 2 gives a brief overview of the related works on collective
perception in swarm robotics. Section 3 describes our proposed method and its mathematical ground. In
Section 4, we present the results of our experiments. Section 5 discusses our findings and the limitations
of different methods. Finally, Section 6 summarizes our work and gives some future directions.

2. Related works
In this section, we review the existing approaches in the literature related to the collective perception
problem by categorizing them according to their theoretical foundation into three categories: Voting
models, Bayesian statistics, and evidence theory.

2.1. Voting models
The first applied strategies to the collective perception problem are the direct modulation of majority-
based decisions (DMMD), the direct modulation of voter-based decisions (DMVD), and the direct
comparison (DC) [12, 18]. These strategies are applied whenever the robot meets its neighbors and tries
to reconsider its opinion. Both DMMD and DMVD are self-organized approaches because they modu-
late positive feedback according to the estimated quality. In the DMMD strategy, the robot chooses the
majority opinion, whereas, in the DMVD strategy, it chooses a random neighbor’s opinion. In the DC
strategy, the robot compares its opinion with a random neighbor. If the opinion of its neighbor is better,
it switches its opinion to this latter. Experiments showed that self-organization in DMMD and DMVD,
through positive feedback modulation, is beneficial for the swarm as it helps the swarm members reach
a consensus quickly.

Shan et al. [19] investigated two ranked voting systems, the single transferable vote (STV) and The
Borda count (BC). In STV, the options are ranked according to the robot’s preference. The option with
the least number of votes is discarded iteratively until a single option holds the majority. In BC, options
are ranked according to the robot’s preference. The least preferred option gets fewer points than the most
preferred option. Experiments showed that BC gives the best performance compared to STV and DC
strategies.

2.2. Bayesian statistics
Motivated by the success of decentralized Bayesian information fusion in many fields, Ebert et al. [13]
proposed a Bayesian algorithm for decision-making. In this framework, they modeled the fill ratio as
a Beta distribution. Then, each robot works as a Bayesian estimator. While it is moving, it updates its
posterior with both the newly collected observations and the transmitted observations of its neighbors.
Once the posterior’s cumulative distribution of a robot passes the credible threshold for an opinion, it
becomes committed to this opinion. Then, it uses positive feedback to push undecided robots to make a
decision.

Shan et al. [16] proposed a distributed Bayesian belief sharing (DBBS) method. This method is
based on hypothesis testing to estimate the fill ratio of two features. In this method, possible percentages
of the fill ratio were mapped into hypotheses. Then, the robots start updating their belief about each
hypothesis using both the newly collected observations from the environment and the shared beliefs
of their neighbors. Although the DBBS method outperforms the DMVD and DC methods, it has a
communication overhead compared to them. Furthermore, it depends on two tuned parameters, a decay
coefficient to decay the old received beliefs and a rate parameter to control positive feedback.
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Figure 2. Motion control: probabilistic finite state machine (PFSM) controlling each robot motion.

2.3. Evidence theory
Bartashevich et al. [15] studied the problem of spatial correlations in collective perception using
evidence theory, which is known to be effective in situations with uncertainty and conflict. Such a
situation is typical in the problem of collective perception. In this study, the authors focused on infor-
mation pooling and explored eight fusion operators for combining evidence from other robots. Their
results showed that the proportional conflict redistribution rule gives the best performance and lets the
swarm reach a consensus with certainty in the presence of up to five options.

3. Methodology
In this section, We will describe the problem setup and our proposed strategy, MLES, to estimate the
fill ratio of the environment.

3.1. Experimental setup
We follow the same setup of Valentini et al. [18] to define the collective perception scenario. This setup
is intended to be a general setup that addresses a class of problem scenarios in collective decision-
making where the quality of features/options is asymmetric (black or white), and the cost of evaluating
features/options is symmetric (i.e., The time required for a robot to perceive the color of the arena surface
is the same for both black and white). As a result, we gain in strategy generality because the designed
strategy for this setup applies to different problem scenarios of the same class. We have a square arena
of size 2 × 2 meters bounded by four walls. The floor is composed of tiles of different colors, and
each tile is 0.1 × 0.1 meters wide. Thus, we get 400 tiles forming the arena. These tiles are randomly
scattered to abstract the presence of different features in the environment (see Fig. 1). The swarm of
robots exploring the arena consists of 20 e-puck robots [20]. An e-puck robot has a maximum velocity
of 16 cm/s and has a ground sensor to detect the color of the ground beneath its body and a range and
bearing IR communication module to communicate with neighbors, which is set to 50 cm. Here we
assume a peer-to-peer communication paradigm where messages are broadcasted to the neighboring
robots. Moreover, the robots are anonymous. This scenario is more challenging since it differs from ref.
[15], which relies on bidirectional communication to perform opinion pooling to achieve consensus. To
perform our experiments, we use the Python simulation environment in ref. [16].

3.2. Motion control
Each robot in the arena performs a random walk according to the probabilistic finite state machine shown
in Fig. 2. A robot performs either a straight motion or a random rotation on the spot. The straight motion
duration is sampled from an exponential distribution with a mean of 40 s Exp(40). The random rotation
consists of turning randomly on the spot for a duration that is sampled from a uniform distribution
between 0 and 4.5 s U(0, 4.5). Robots use their proximity sensors to detect obstacles and find an opposite
direction that is free of obstacles in order to avoid collisions with other robots and the arena’s walls.
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Algorithm 1 Maximum likelihood estimate sharing (MLES)

3.3. Algorithm description
Each robot i in the swarm is controlled by Algorithm 1. In the beginning, the robots are positioned
randomly in the arena, which they explore by performing a random walk (line 6) (Section 3.2). While
moving, they observe the ground underneath and collect samples within a defined sampling interval σ

(line 7). The sampling is performed while the robot is in the straight motion state because when a robot
is in the random rotation state, it collects correlated samples of the same tile. During straight motion,
the robot locally estimates the proportion of black samples (line 15) (Section 3.3.1). At each control
loop, it collects the collective estimate f̂j and the number of collected samples mj of a random neighbor
j. Then, it aggregates its estimate p̂i with this latter to form an updated collective estimate of the arena
(line 19) (Section 3.3.2). Finally, it broadcasts this estimate to its neighboring robots (line 20).

In summary, our algorithm for the collective perception problem is composed of two components:
an individual estimate wherein each robot makes its own estimate of the environment and a collective
estimate wherein the individual estimates are aggregated through local communication between each
robot and its neighbors.

3.3.1. Individual estimate
Each robot collects an observation at each time step which might be a black or white tile. We model this
kind of binary outcome with a Bernoulli distribution, where X denotes a binary random variable repre-
senting each observation. The Bernoulli distribution is a parameterized distribution with one parameter
p that represents, in our case, the probability of X = 1 (black color observation).

X ∼ Bernoulli(p)
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Under the assumption that the samples (i.e., ground sensor observations) are independent and iden-
tically distributed (iid), we estimate the parameter p of our distribution using the MLE as follows:

p̂ = arg max
p

L(p)

Then, we substitute the probability mass function (pmf) of the Bernoulli distribution and derive the
logarithm of the likelihood function LL

L(p) =
n∏

i=1

pXt (1 − p)1−Xt

LL(p) =
n∑

i=1

Xt log p + (1 − Xt) log (1 − p)

By differentiating the log-likelihood function with respect to p and setting the derivative equal to 0, we
obtain

p̂ =
∑n

t=0 Xt

n
(1)

We conclude that the individual estimate represents the number of black color observations (Xt = 1)
over the total number of observations.

3.3.2. Collective estimate
Each robot i in the swarm benefits from the surrounding robots as it collects their estimates to form a
collective estimate f̂i of the arena fill ratio. The collective estimate f̂i is the aggregation of two pieces
of information: the robot’s individual estimate p̂i and a random neighbor’s shared estimate f̂j, where
j ∈Ni, and Ni is the set of neighboring robots within its communication range. At each control loop,
it is updated iteratively using the weighted sum of the individual estimate and the shared estimate as
follows:

f̂i = �(mj)p̂i + (1 − �(mj))f̂j (2)

Where � represents a weighting function that abstracts the robot’s amount of confidence to either
estimate. In a nutshell, the collective estimate encompasses information accumulated from the neigh-
boring robots and by the robot itself. The weighting function acts as a decay function that gives more
weight to the robot’s individual estimate and less weight to the neighbors’ estimate in the beginning.
Then, as the robots collect more samples and each robot’s individual estimate is passed to the other
robots over time, more weight is given to the shared estimate. In such a way, we guarantee accuracy at
the beginning of the decision-making process. After that, we gain speed by promoting the influence of
the shared information from neighbors.

In contrast to ref. [16], the weighting mechanism employed in our method affects the robot’s individ-
ual and shared estimates in a complementary way. As more weight is given to one quantity, less weight
is given to the other one. Furthermore, the decay coefficients are applied as static values, whereas here,
we apply a dynamic decay function to the individual estimate p̂i, which is formulated as follows:

�(mj) = 1

1 + λ
√

mj

Where mj is the number of samples accumulated by a neighbor j and λ is a decay parameter that controls
the decay rate. Its value is between 0 and 1 (see Fig. 3). This function gives less weight to a neighbor’s
estimate when this latter is computed using few samples and more weight as this estimate is computed
using more samples. As a result, the estimate is more impacted using confident neighbors’ estimates
and less impacted using less confident ones.
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Figure 3. Plot of the decay function �(m) for various values of its parameter λ.

In accordance with the literature [18], the decay function modulates positive feedback by amplifying
the disseminated estimate of confident robots and inhibiting that of less confident ones in a way that is
proportional to the confidence in the shared estimate. Using this self-organized mechanism, MLES can
sustain noisy information and promote the dissemination of the best estimates.

3.4. Communication bandwidth
It has been shown in ref. [17] that the communication bandwidth affects the performance of different
collective decision-making algorithms. Thus, we set the same communication bandwidth for all con-
sidered algorithms: DC, DBBS, and MLES, by following the same assumptions on the format of the
exchanged messages between robots. Using c++ data types, a short int is 16 bits in size and a float is
48 bits in size. In the DC strategy, each robot communicates a message of size 48 bits, that contains its
decision index (short int) and the estimated quality (float). MLES has the same message size of 48 bits,
which contains the neighbor’s number of accumulated observations (short int) and the estimated fill
ratio (float). In DBBS, the robots communicate a message of size 320 bits, which represents the number
of the fill ratio hypotheses (H×float), where H = 10. To set the same communication bandwidth for all
algorithms as in ref. [17], a probability of broadcasting ρ is employed. Since DC and MLES have the
same message size, this probability is applied only to the DBBS algorithm with a value of ρ = 0.15.
This makes all algorithms work with the same communication bandwidth of 48 bits/s.

3.5. Performance metrics
For the purpose of assessing the performance of our method and the considered decision-making meth-
ods for comparison, we use three performance metrics used by ref. [16] to measure the speed, accuracy,
and failure rate. These metrics are more informative compared to the exit probability and the consensus
time metrics used in refs. [18, 21].

Mean consensus time: gives the speed of the decision-making strategy, which is computed as the num-
ber of time steps until all the swarm members reach the same opinion. The mean value is obtained by
averaging over the number of trials n.

Mean absolute error: measures the accuracy of the decision-making strategy, which is computed as the
difference between the swarm estimated decision and the correct decision. This is also averaged over
the number of trials.

MAE =
∑n

i=0|d̂i − di|
n
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Failure rate: represents the proportion of trials where the swarm members fail to achieve consensus
within the time limit of 1200 s.

Since we aim to estimate the fill ratio rather than selecting the best feature in the environment, the fill
ratio range [0, 1] is sliced into 10 bins of 0.1 intervals each. If the robot estimate f̂ is within the interval
[f − 0.05, f + 0.05] where f is the true fill ratio of the environment, we consider the robot estimate as
correct. We follow the same experimental setting as in ref. [16] by testing five possible configurations
of the fill ratio of the arena f = {0.05, 0.15, 0.25, 0.35, 0.45}. A trial is considered successful if all the
estimates of the swarm are correct. In our experiments, we perform 50 trials for each environmental
configuration. This results in 250 trials which are then averaged for each parameter setting. As stated in
the literature [12, 13, 15, 16], there is a tradeoff between the speed and accuracy of the decision-making
algorithm for each parameter setting. Therefore, the performance assessment of such algorithms involves
analyzing this tradeoff at different values that the algorithm’s configuration parameters may take. Our
algorithm is not an exception where various values of the decay parameter λ give different tradeoffs.
In this paper, we analyze this tradeoff in comparison with the investigated methods in the literature.
We analyze the tradeoffs between speed and accuracy as a multiobjective optimization problem. Each
algorithm seeks to reach consensus with the minimum mean consensus time and mean absolute error.
We perform a parameter sweep over possible parameter values for DC, DBBS, and MLES using the
same sampling interval of 1 s. According to each algorithm’s configuration parameters, we assess the
following parameter settings:
DC: τ = {0.00, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08}
DBBS: λ = {0.5, 0.6, 0.7, 0.8, 0.9}, μ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}
MLES: λ = {0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}

4. Results
4.1. The effect of feature distribution
4.1.1. Random pattern
In this setup, the arena tiles are randomly assigned a black or white color with values 1 and 0,
respectively. An illustration is shown in Fig. 4a. All strategies DC, DBBS, and MLES exhibit dif-
ferent speed-vs-accuracy tradeoffs at various settings of their configuration parameters, as shown in
Tables I–III, respectively. For the MLES strategy, as we increase λ, we gain in consensus speed, but
we lose in accuracy with an error of 0.012 for λ = 0.6. By comparing MLES performance with DBBS
and DC strategies, we can see in Fig. 5 that all decision-making strategies also display various tradeoffs
between speed and accuracy at different parameter settings and give no failures across all their param-
eter settings. Additionally, Pareto frontiers show clearly that MLES (green line) outperforms DC (red
line) and DBBS (blue line) in terms of decision accuracy and speed across all its parameter settings.

(a) (b) (c)

Figure 4. Illustration of various patterns representing the distribution of features in the environment.
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Table I. Performance of DC at various τ settings in a random environment.
τ

Metrics 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Mean consensus time 71.8 84.4 101.5 116.3 134.7 162.0 175.0 190.3 207.3
Mean absolute error 0.736 0.588 0.392 0.380 0.260 0.196 0.160 0.132 0.076
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table II. Performance of DBBS at various μ and λ settings in a random environment.
Mean consensus time Mean absolute error Failure rate

μ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

λ 0.5 120.7 90.8 73.8 67.3 63.6 61.8 0.000 0.000 0.004 0.008 0.080 0.192 0.000 0.000 0.000 0.000 0.000 0.000
0.6 111.1 87.2 69.0 62.0 59.8 63.7 0.000 0.000 0.000 0.020 0.116 0.248 0.000 0.000 0.000 0.000 0.000 0.000
0.7 109.9 78.4 68.9 63.4 60.9 60.2 0.000 0.000 0.000 0.040 0.172 0.256 0.000 0.000 0.000 0.000 0.000 0.000
0.8 107.9 76.1 66.1 63.0 58.9 58.7 0.000 0.000 0.020 0.120 0.180 0.308 0.000 0.000 0.000 0.000 0.000 0.000
0.9 106.3 74.5 62.4 61.8 59.2 62.4 0.000 0.004 0.016 0.108 0.192 0.388 0.000 0.000 0.000 0.000 0.000 0.000

Table III. Performance of MLES at various λ settings in a random environment.
λ

Metrics 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6

Mean consensus time 133.7 102.7 91.2 82.9 74.7 62.2 57.4 53.2 49.5 49.4
Mean absolute error 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.012
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 5. Comparison between DC, DBBS, and MLES in a random environment using three metrics:
mean consensus time, mean absolute error, and failure rate (markers color); Pareto frontiers: DC (red
line), DBBS (blue line), MLES (green line).

It reaches consensus with zero error in the shortest time of 57 s compared to DBBS, which takes 69 s.
On the other hand, DC was not able to reach a consensus without errors over the range of its parameter
settings, and its lowest mean error is 0.076. Even though it reached a low consensus time of (71 s), but
at the cost of a high mean error of 0.736.
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4.1.2. Block pattern
It was shown in refs. [15, 22] that the distribution of the features in the environment significantly impacts
the performance of the collective perception algorithms. If the feature is scattered homogeneously
(i.e., randomly distributed) in the environment, the robot, while moving randomly and collecting sam-
ples, on average, gets a good estimate of the feature. This is not the case when the features are
concentrated in the environment. The concentration of the features in the environment increases the
probability of robots not observing one feature over a long period of time because the feature is concen-
trated somewhere in the arena. As a result, we witness an increase in the variance between the robots’
estimates which makes coming to a consensus more difficult.

In this environmental setup, the features are not distributed evenly in the arena but instead concen-
trated, forming a cluster, as illustrated in Fig. 4b. From Fig. 6, we can see that a decrease in performance
is exhibited by all strategies, which is displayed by an increase in the mean consensus time and the mean
absolute error. This confirms that decision-making algorithms struggle in environments with spatially
concentrated features. Here also, MLES reaches the minimum mean consensus time of 247 s without
errors (see Table VI), followed by DBBS with a mean consensus time of 331 s (see Table V), whereas,
DC is still not capable of achieving consensus without errors (see Table IV). In terms of failure rate,

Table IV. Performance of DC at various τ settings in a block environment.
τ

Metrics 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Mean consensus time 97.2 107.1 126.6 149.4 164.3 218.1 227.9 254.5 255.8
Mean absolute error 0.980 0.640 0.620 0.420 0.280 0.220 0.160 0.100 0.100
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table V. Performance of DBBS at various μ and λ settings in a block environment.
Mean consensus time Mean absolute error Failure rate

μ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

λ 0.5 634.8 428.7 259.6 155.7 111.9 99.7 0.000 0.000 0.020 0.080 0.380 0.700 0.040 0.040 0.000 0.000 0.000 0.000
0.6 523.5 331.1 178.8 127.6 103.8 94.1 0.000 0.000 0.020 0.300 0.480 0.800 0.000 0.000 0.000 0.000 0.000 0.000
0.7 481.5 265.7 141.1 116.8 98.5 94.8 0.000 0.000 0.080 0.340 0.700 1.040 0.020 0.020 0.000 0.000 0.000 0.000
0.8 400.6 195.5 136.6 101.5 92.7 92.6 0.000 0.020 0.420 0.580 0.700 1.080 0.000 0.000 0.000 0.000 0.000 0.000
0.9 333.1 158.4 115.4 101.6 83.5 91.1 0.000 0.060 0.360 0.680 1.080 1.500 0.000 0.000 0.000 0.000 0.000 0.000

Figure 6. Comparison between DC, DBBS, and MLES in a block environment using three metrics:
mean consensus time, mean absolute error, and failure rate (markers color); Pareto frontiers: DC (red
line), DBBS (blue line), MLES (green line).
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Table VI. Performance of MLES at various λ settings in a block environment.
λ

Metrics 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6

Mean consensus time 363.9 276.8 247.0 221.1 204.3 157.7 146.6 122.2 129.3 123.1
Mean absolute error 0.000 0.000 0.000 0.020 0.040 0.060 0.100 0.160 0.140 0.140
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

both MLES and DC show no failures across all parameter settings. In contrast, DBBS begins to display
failures specifically for a low setting of its parameters λ and μ.

4.1.3. Stripe pattern
In this pattern, the features are also concentrated, forming a cluster positioned on one side of the arena
(see Fig. 4c). It is considered the most challenging pattern in the literature [23]. As shown in Fig. 7,
DBBS and DC are unable to come to a consensus without errors and failures across all their parameter
settings. In contrast, MLES is capable of reaching consensus with zero error and without failures at a
low parameter setting, λ = 0.04, in 389 s (see Table IX). DBBS exhibits a high failure rate of 0.34 at
low parameter settings and a high mean error of 2.6 at high parameter settings (see Table VIII). The DC
strategy’s performance is also affected significantly with a failure rate of 0.12 and a high mean error of
2.4 (see Table VII), but conversely to DBBS in terms of parameter settings. These results demonstrate
the viability of MLES in such a difficult environment.

Table VII. Performance of DC at various τ settings in a striped environment.
τ

Metrics 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Mean consensus time 157.0 177.9 266.4 321.0 378.5 466.9 552.0 524.6 583.3
Mean absolute error 2.400 2.080 1.380 1.040 0.860 0.540 0.530 0.670 0.270
Failure rate 0.000 0.000 0.000 0.000 0.000 0.040 0.060 0.140 0.120

Figure 7. Comparison between DC, DBBS, and MLES in a striped environment using three metrics:
mean consensus time, mean absolute error, and failure rate (markers color); pareto frontiers: DC(red
line), DBBS(blue line), MLES(green line).
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Table VIII. Performance of DBBS at various μ and λ settings in a striped environment.
Mean consensus time Mean absolute error Failure rate

μ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

λ 0.5 832.3 689.8 349.1 187.5 129.6 120.9 0.000 0.000 0.040 0.240 0.580 1.560 0.340 0.120 0.000 0.000 0.000 0.000
0.6 832.9 539.8 241.2 150.3 123.5 108.8 0.000 0.000 0.080 0.420 0.600 1.480 0.200 0.020 0.000 0.000 0.000 0.000
0.7 788.9 372.4 186.0 135.3 114.3 101.9 0.000 0.000 0.140 0.700 1.120 2.020 0.100 0.020 0.000 0.000 0.000 0.000
0.8 718.5 279.4 161.4 118.5 113.6 108.5 0.000 0.040 0.400 0.760 1.440 2.380 0.020 0.000 0.000 0.000 0.000 0.000
0.9 563.4 224.2 133.9 120.2 114.9 104.0 0.000 0.220 0.500 1.000 2.200 2.600 0.040 0.000 0.000 0.000 0.000 0.000

Table IX. Performance of MLES at various λ settings in a striped environment.
λ

Metrics 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6

Mean consensus time 543.4 389.9 361.9 321.2 302.4 233.7 185.7 185.8 175.0 161.0
Mean absolute error 0.000 0.000 0.040 0.000 0.120 0.160 0.240 0.240 0.220 0.460
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

4.2. The effect of communication bandwidth
An algorithm that requires a low communication bandwidth is desirable in collective decision-making.
To assess the viability of different collective decision-making algorithms in such a configuration,
we set the probability of broadcasting messages according to the corresponding size of informa-
tion shared with neighbors (Section 3.4). Table X summarizes the probability setting for different
algorithms.

At lower communication bandwidth of 16 bits/s, we can see from Fig. 8 (random environment) and
Fig. 9 (block environment) that there is a decrease in the performance of all strategies, which is illustrated
by an increase in the mean consensus time across all their parameter settings. In both environments, ran-
dom and block, the MLES strategy is less affected by the communication bandwidth decrease compared
to DBBS, and the performance margin between them becomes larger at this bandwidth. On the other
hand, the DC strategy shows a moderate drop in performance, but it is still not capable of achieving
consensus without errors (see Tables XI and XIV). In the random environment, MLES reaches the min-
imum consensus time of 85 s (see Table XIII), followed by DBBS with 112 s (see Table XII), which
represents a margin of 27 s. In the block environment, MLES takes less time (224 s) to achieve consen-
sus with zero error (see Table XVI), whereas DBBS takes 287 s and begins to suffer from failures at low
parameter settings with a failure rate of 0.02 (see Table XV).

Table X. Broadcast probability for DC, DBBS,
and MLES at various communication bandwidths.

Communication bandwidth

Strategy 48 bits/s 16 bits/s

DC 1 1/3
DBBS 0.15 0.05
MLES 1 1/3
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Table XI. Performance of DC at various τ settings in a random environment with
a communication bandwidth of 16 bits/s.

τ

Metrics 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Mean consensus time 97.8 102.0 135.6 181.6 172.6 207.4 208.1 241.3 252.9
Mean absolute error 0.820 0.776 0.528 0.372 0.344 0.344 0.280 0.208 0.176
Failure rate 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table XII. Performance of DBBS at various μ and λ settings in a random environment with a
communication bandwidth of 16 bits/s.

Mean consensus time Mean absolute error Failure rate

μ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

λ 0.5 175.8 151.0 128.3 120.5 113.6 112.4 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.000 0.000 0.000
0.6 167.4 138.3 126.2 115.3 112.0 114.9 0.000 0.000 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.000 0.000 0.000
0.7 158.0 136.5 119.7 115.5 110.9 114.5 0.000 0.000 0.000 0.000 0.028 0.032 0.000 0.000 0.000 0.000 0.000 0.000
0.8 152.8 131.1 121.3 115.1 116.5 114.2 0.000 0.000 0.000 0.000 0.036 0.060 0.000 0.000 0.000 0.000 0.000 0.000
0.9 158.8 128.2 114.8 115.5 117.5 109.3 0.000 0.000 0.000 0.000 0.052 0.048 0.000 0.000 0.000 0.000 0.000 0.000

Table XIII. Performance of MLES at various λ settings in a random environment
with a communication bandwidth of 16 bits/s.

λ

Metrics 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6

Mean consensus time 137.8 111.3 96.5 91.0 85.8 74.3 70.3 70.6 72.0 72.8
Mean absolute error 0.000 0.000 0.000 0.000 0.000 0.004 0.012 0.028 0.080 0.080
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table XIV. Performance of DC at various τ settings in a block environment with a
communication bandwidth of 16 bits/s.

τ

Metrics 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Mean consensus time 120.3 132.6 176.6 190.0 207.5 249.2 300.9 339.5 388.9
Mean absolute error 1.280 0.720 0.760 0.480 0.540 0.260 0.280 0.200 0.080
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table XV. Performance of DBBS at various μ and λ settings in a block environment with a communi-
cation bandwidth of 16 bits/s.

Mean consensus time Mean absolute error Failure rate

μ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

λ 0.5 764.2 519.3 353.6 287.3 239.2 217.4 0.000 0.000 0.000 0.000 0.100 0.100 0.020 0.000 0.000 0.000 0.000 0.000
0.6 632.4 409.1 308.1 230.9 216.1 215.4 0.000 0.000 0.000 0.020 0.200 0.300 0.020 0.000 0.000 0.000 0.000 0.000
0.7 565.3 402.7 285.6 243.1 226.9 199.7 0.000 0.000 0.020 0.120 0.220 0.400 0.020 0.000 0.000 0.000 0.000 0.000
0.8 570.6 307.8 246.3 224.9 206.0 186.4 0.000 0.000 0.040 0.120 0.460 0.400 0.020 0.000 0.000 0.000 0.000 0.000
0.9 476.4 319.0 270.0 217.7 187.9 181.4 0.000 0.000 0.180 0.220 0.300 0.480 0.020 0.000 0.000 0.000 0.000 0.000
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Table XVI. Performance of MLES at various λ settings in a block environment with
a communication bandwidth of 16 bits/s.

λ

Metrics 0.02 0.04 0.06 0.08 0.1 0.2 0.3 0.4 0.5 0.6

Mean consensus time 396.4 278.6 257.5 224.9 209.3 174.0 165.7 165.0 154.4 129.7
Mean absolute error 0.000 0.000 0.000 0.000 0.040 0.040 0.100 0.200 0.160 0.300
Failure rate 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 8. Comparison between DC, DBBS, and MLES in a random environment with a communication
bandwidth of 16 bits/s using three metrics: mean consensus time, mean absolute error, and failure rate
(markers color); Pareto frontiers: DC (red line), DBBS (blue line), MLES (green line).

Figure 9. Comparison between DC, DBBS, and MLES in a block environment with a communication
bandwidth of 16 bits/s using three metrics: mean consensus time, mean absolute error, and failure rate
(markers color); Pareto frontiers: DC (red line), DBBS (blue line), MLES (green line).

4.3. The effect of noisy sensors
When analyzing the performance of robotic systems, it is essential to consider the presence of noise,
which can affect the performance of deployed algorithms. In this section, we investigate how the MLES
method is affected by corrupted ground sensor readings. Towards this end, we introduce a Gaussian
noise to the ground sensor readings as follows:

O′(t) = O(t) + η(t)
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Figure 10. The effect of noisy sensors on DC, DBBS, and MLES in a random environment with a
communication bandwidth of 48 bits/s using three metrics: mean consensus time, mean absolute error,
and failure rate (markers color); Pareto frontiers: DC (red line), DBBS (blue line), MLES (green line).

where O′(t) is the noisy observation, O(t) is the true observation, and η(t) is a Gaussian noise with zero
mean and a standard deviation σ . Since the robot’s ground sensor is a binary sensor that outputs a binary
value of 0 or 1, we set a threshold of 0.5 for the noisy observation O′(t) to get a binary output. In our
experiments, we explore different noise levels with σ = {0.1, 0.2, 0.3} (see Fig. 10).

Using a low noise level of σ = 0.1, we can see that the performance of all strategies is almost
unaffected by the introduced noise level, and the obtained results are nearly identical to those without
noise.
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Using a moderate noise level of σ = 0.2, we can see that the performance of all strategies is slightly
affected by this amount of noise, where both MLES and DBBS mean consensus time increases by almost
8 s while still maintaining zero error. On the other hand, the DC strategy is unaffected.

Using a high noise level of σ = 0.3, we notice a significant drop in the performance of all strategies
in terms of means consensus time, mean absolute error, and failure rate. However, MLES is the least
affected by this drop compared to other strategies. This is illustrated by MLES Pareto frontier, which
is well beyond the Pareto frontiers of DC and DBBS. Even though all strategies are unable to achieve
consensus with zero error, MLES is mostly capable of achieving consensus at a low parameter setting
of λ in 242 s with the lowest mean error of 0.004. DBBS is the most affected by this high noise level
which is illustrated by a significant shift of its Pareto frontier and an increase in the failures over its low
parameter settings.

Overall, obtained results indicate that MLES is more noise-resistant than DC and DBBS, which
supports the ability of our self-organized mechanism to better withstand noise.

4.4. The effect of swarm size
To evaluate the impact of the swarm size on the performance of different algorithms, we perform exper-
iments with various swarm sizes 20, 40, and 80 in an environment with a random pattern using 48 bits/s
communication bandwidth. For a fair assessment of the swarm size effect on each algorithm, we chose
the parameter settings shown in Table XVII that produce the best results on Pareto frontiers for each
algorithm. This choice is based on the results obtained in the random environment (see Section 4.1.1),
which is used to investigate the effect of swarm size. Intuitively, we would expect that the larger the
swarm size is, the faster the consensus is achieved. However, we notice an increase in consensus time
as the swarm size increases (see Fig. 11). Exploring all possible parameter settings further revealed that
a larger swarm size reaches consensus faster but at higher parameter settings in MLES and DBBS, this
suggests that the considered algorithms require parameter tuning for different swarm sizes. Moreover,
Fig. 12 shows that DBBS and MLES are not affected by the swarm size, where the mean absolute error

Table XVII. Parameter settings that provide the
best speed-vs-accuracy tradeoff for DC, DBBS,
and MLES strategies in a random environment.
Strategy Parameter settings

DC λ = 0.08
DBBS λ = 0.7, μ = 0.4
MLES λ = 0.3

Figure 11. Effect of the swarm size on the mean consensus time.
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Figure 12. Effect of the swarm size on the mean absolute error.

Figure 13. Effect of the swarm size on the failure rate.

is maintained at zero for various swarm sizes. In contrast, the DC strategy shows a high mean error of
1.228 as we increase the swarm size to 80. The failure rate (see Fig. 13) is maintained at zero for different
swarm sizes using DBBS and MLES but increases dramatically to 0.496 using the DC strategy as the
swarm size increases to 80. These results confirm the scalability of DBBS and MLES compared to the
DC strategy and demonstrate the robustness of self-organized approaches.

5. Discussion
As demonstrated in our results, MLES outperforms all considered strategies in terms of speed and accu-
racy for the discrete collective estimation problem. By comparing the Pareto frontiers of all considered
strategies, MLES achieves the shortest consensus time without errors in various environments. Besides,
although reducing the communication bandwidth increases the consensus time and error of all consid-
ered strategies, MLES withstands this reduction and maintains its superior performance over DC and
DBBS. This robustness is due to our strategy’s positive feedback modulation mechanism, which shares
its motivation with self-organized approaches like DBBS, but with a better mechanism that modulates
positive feedback dynamically using a confidence function that reflects the robot’s confidence in its fill
ratio estimate.

A desirable property that we seek from a collective decision-making algorithm is accuracy. Such an
algorithm should guarantee to reach a consensus on the correct option. This property is not guaranteed
by the DC strategy, which is incapable of achieving consensus without errors across all its parameter
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settings, and also DBBS, which is not accurate in the stripe environment. On the other hand, MLES
is accurate since it guarantees consensus without errors and failures at low parameter settings. Even
though this setting results in longer consensus time, it prevents the robots from making premature deci-
sions which may result in reaching a consensus on the wrong option. This tradeoff is controlled using
the parameter λ whereby a low parameter setting makes the robot less affected by the disseminated
information, which favors accuracy. In contrast a high parameter setting makes the robot more affected
by the disseminated information, which favors speed.

In terms of communication bandwidth requirements, MLES requires less communication bandwidth
compared to DBBS which is more demanding as this need depends on the number of hypotheses about
the fill ratio. Furthermore, if more precision about the fill ratio estimate is required, more hypotheses
need to be transmitted which will limit the viability of DBBS. In contrast, MLES and DC would be unaf-
fected by this requirement. This demonstrates the viability of MLES in low communication bandwidths
without losing too much in speed and accuracy in different environments.

In robotic systems, noise is an inevitable factor that can significantly impact the performance and
reliability of the system. As robots operate in the real world, they are exposed to a wide range of envi-
ronmental and operational factors that can introduce noise into the system. Therefore, it is essential to
develop collective decision-making algorithms that can sustain noise to ensure the reliable and effective
operation of robotic systems. The ability of these algorithms to sustain noise is critical to ensuring that
the group can make accurate and effective decisions even in the presence of unpredictable or noisy
data. MLES owes its robustness to noisy observations in comparison to DC and DBBS to its self-
organized mechanism for modulating positive feedback by giving more weight to information from
confident neighbors. In this way, MLES can reduce the impact of noise in the estimation process.

In comparison with opinion pooling-based methods [9] for collective decision-making, which relies
on bidirectional communication, here we consider a more challenging communication paradigm that
relies on peer-to-peer communication where messages are broadcasted to neighbors. Additionally,
these methods are computationally more complex than MLES. Thus, our method requires a sim-
pler infrastructure in terms of communication and computation compared to opinion-pooling-based
methods.

The performance of all considered algorithms in this study is sensitive to the choice of their parameter
settings. Selecting the best parameter setting for different environmental setups and swarm sizes is not
straightforward. Unfortunately, this is the case for all the considered algorithms in this study. In a real-
world problem, at best, we have the size of the swarm, but we have no idea about the distribution of
features in the environment. Although a low parameter setting of λ in MLES can guarantee accuracy in
various environments but to the detriment of speed. We think that this limitation should be addressed to
make a collective decision-making strategy adaptive to any environmental setup.

MLES strategy is limited to estimating the ratio of only two features present in the environment. A
multifeature environment presents additional complexity to the swarm robots in their collective estima-
tion process because it adds more conflicting and noisy information that is exchanged among them. This
limitation has not yet been addressed as a collective estimation problem, but it was addressed from the
perspective of the best-of-n problem (i.e., collectively deciding on the dominant feature in the environ-
ment) by Ebert et al. [22]. However, their method required a dynamic task allocation mechanism to help
robots switch between features they are estimating.

6. Conclusion and Future Works
In this work, we tackled the problem of collective perception in swarm robotics to estimate the ratio of
the present features in the environment rather than reaching a consensus on the prevalent one. This prob-
lem is treated as a discrete collective estimation scenario in the presence of two features using a swarm of
anonymous robots with local communication and sensing capabilities. We proposed the MLES method,
a solution that incorporates a self-organized mechanism that modulates positive feedback in order to dis-
seminate the best estimate among the swarm. Then, we compared our approach with the existing methods
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in the literature in different environmental setups where our method outperformed them in terms of accu-
racy and speed using the same peer-to-peer communication paradigm and bandwidth by improving the
efficiency of the decision-making process by almost 20% in comparison to DBBS. We also assessed
its performance at lower communication bandwidth, where it also showed superior performance while
requiring six times less communication bandwidth than DBBS. Moreover, results showed that MLES
is more noise-resistant than DC and DBBS, indicating that our self-organized mechanism can with-
stand noise better. Furthermore, the scalability of the considered strategies is evaluated using different
swarm sizes where MLES and DBBS strategies proved their scalability and robustness as self-organized
approaches.

Experimentations with a real E-pucks robotics platform will be conducted in future works to show
how well the proposed approach will perform in real-world scenarios. Additionally, we consider explor-
ing the performance of our method in more complex environments such as dynamic environments. Also,
we intend to investigate controlling the motion of the robots rather than relying on a random walk, which
is less efficient and produces correlated observations.

Author contributions. Ahmed Abdelli developed the theoretical formalism and performed the simulation experiments. Ali
Yachir, Abdenour Amamra, and Belkacem Khaldi contributed to the final version of the manuscript.

Financial support. This research received no specific grant from any funding agency, commercial, or not-for-profit sectors.

Conflicts of interest. The authors declare no conflicts of interest exist.

Ethical approval. Not applicable.

References
[1] B. Khaldi and F. Cherif, “An overview of swarm robotics: Swarm intelligence applied to multi-robotics,” Int. J. Comput.

Appl. 126(2), 31–37 (2015).
[2] E. Şahin Swarm Robotics: From Sources of Inspiration to Domains of Application, Swarm Robotics, E. ŞahinW. M.

SpearsSpringer, Berlin, Heidelberg, 2005, 10–20.
[3] M. Brambilla, E. Ferrante, M. Birattari and M. Dorigo, “Swarm robotics: A review from the swarm engineering perspective,”

Swarm Intell. 7(1), 1–41 (2013).
[4] J. C. Barca and Y. A. Sekercioglu, “Swarm robotics reviewed,” Robotica 31(3), 345–359 (2013).
[5] M. Schranz, M. Umlauft, M. Sende and W. Elmenreich, “Swarm robotic behaviors and current applications,” Front. Robot.

AI 7, 36 (2020).
[6] A. Reina, G. Valentini, C. Fernández-Oto, M. Dorigo and V. Trianni, “A design pattern for decentralised decision making,”

PLOS One 10(10), e0140950 (2015).
[7] G. Valentini, E. Ferrante and M. Dorigo, “The best-of-n problem in robot swarms: Formalization, state of the art, and novel

perspectives,” Front. Robot. AI 4, 9 (2017).
[8] M. S. Talamali, A. Saha, J. A. R. Marshall and A. Reina, “When less is more: Robot swarms adapt better to changes with

constrained communication,” Sci. Robot. 6(56), eabf1416 (2021).
[9] C. Lee, J. Lawry and A. F. T. Winfield, “Negative updating applied to the best-of-n problem with noisy qualities,” Swarm

Intell. 15(1), 111–143 (2021).
[10] N. Nedjah and L. S. Junior, “Review of methodologies and tasks in swarm robotics towards standardization,” Swarm Evol.

Comput. 50, 100565 (2019).
[11] H. Hamann Swarm Robotics: A Formal Approach (Springer International Publishing, Germany, 2018).
[12] G. Valentini, E. Ferrante, H. Hamann and M. Dorigo, “Collective decision with 100 kilobots: Speed versus accuracy in

binary discrimination problems,” Auton. Agent Multi-Agent Syst. 30a(3), 553–580 (2016).
[13] J. T. Ebert, M. Gauci, F. Mallmann-Trenn and R. Nagpal. Bayes Bots: Collective Bayesian Decision-Making in Decentralized

Robot Swarms. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020
pp. 7186–7192.

[14] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula and E. Bonabeau. Self-Organization in Biological
Systems (Princeton University Press, UK, 2001).

[15] P. Bartashevich and S. Mostaghim, “Multi-featured collective perception with evidence theory: Tackling spatial correla-
tions,” Swarm Intell. 15(1), 83–110 (2021).

[16] Q. Shan and S. Mostaghim, “Discrete collective estimation in swarm robotics with distributed Bayesian belief sharing,”
Swarm Intell. 15(4), 377–402 (2021).

https://doi.org/10.1017/S0263574723000668 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000668


Robotica 2773

[17] Q. Shan and S. Mostaghim, “Benchmarking Performances of Collective Decision-Making Strategies with Respect to
Communication Bandwidths in Discrete Collective Estimation,” In: Swarm Intelligence, Lecture Notes in Computer
Science, M. Dorigo, H. Hamann, M. López-Ibáñez, J. García-Nieto, A. Engelbrecht, C. Pinciroli, V. Strobel and C.
Camacho-Villalón, Springer International Publishing, Cham, 2022, 54–65.

[18] G. Valentini, D. Brambilla, H. Hamann and M. Dorigo, “Collective Perception of Environmental Features in a Robot
Swarm,” In: Swarm Intelligence, M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C. Pinciroli and T. Stützle,
(Springer International Publishing, Cham) 2016, 65–76.

[19] Q. Shan, A. Heck and S. Mostaghim. Discrete Collective Estimation in Swarm Robotics with Ranked Voting Systems.
In: 2021 IEEE Symposium Series on Computational Intelligence (SSCI), (2021) pp. 1–8.

[20] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-C. Zufferey, D. Floreano, A. Martinoli.
The e-puck, a Robot Designed for Education in Engineering, vol. 1. Instituto Politécnico de Castelo Branco, Portugal, (2009)
pp. 59–65.

[21] V. Strobel, E. C.ó Ferrer and M. Dorigo. Managing Byzantine Robots via Blockchain Technology in a Swarm Robotics
Collective Decision Making Scenario. In: Proceedings of the 17th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’18, Richland, SC: International Foundation for Autonomous Agents and Multiagent
Systems, 2018, 541–549.

[22] J. T. Ebert, M. Gauci and R. Nagpal. Multi-Feature Collective Decision Making in Robot Swarms. In: Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’18, Richland, SC: International
Foundation for Autonomous Agents and Multiagent Systems, 2018, 1711–1719.

[23] P. Bartashevich and S. Mostaghim, “Benchmarking Collective Perception: New Task Difficulty Metrics for Collective
Decision-Making,” In: Progress in Artificial Intelligence, Lecture Notes in Computer Science, P. M. Oliveira, P. Novais
and L. P. Reis, Springer International Publishing, Cham, 2019, 699–711.

Cite this article: A. Abdelli, A. Yachir, A. Amamra and B. Khaldi (2023). “Maximum likelihood estimate sharing for collective
perception in static environments for swarm robotics”, Robotica 41, 2754–2773. https://doi.org/10.1017/S0263574723000668

https://doi.org/10.1017/S0263574723000668 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000668
https://doi.org/10.1017/S0263574723000668

	
	Introduction
	Related works
	Voting models
	Bayesian statistics
	Evidence theory
	Methodology
	Experimental setup
	Motion control
	Algorithm description
	Individual estimate
	Collective estimate
	Communication bandwidth
	Performance metrics
	Results
	The effect of feature distribution
	Random pattern
	Block pattern
	Stripe pattern
	The effect of communication bandwidth
	The effect of noisy sensors
	The effect of swarm size
	Discussion
	Conclusion and Future Works

