Ergod. Th. & Dynam. Sys., (2023), 43, 3311-3340 © The Author(s), 2022. Published by Cambridge 3311
University Press.
doi:10.1017/etds.2022.67

A variational principle for weighted topological
pressure under Z%-actions

QIANG HUO and RONG YUAN

Laboratory of Mathematics, Complex Systems (Ministry of Education),
School of Mathematical Sciences, Beijing Normal University,
Beijing 100875, PR China
(e-mail: 201821130016 @mail.bnu.edu.cn, ryuan @bnu.edu.cn)

(Received 29 October 2021 and accepted in revised form 30 August 2022)

Abstract. Let k> 2 and (X;,7;),i=1,...,k, be 79 -actions topological dynamical
systems with 7; := {Tl.g : Xi—)X[}gezd, where d € N and f € C(X1). Assume that for
each 1 <i <k —1, (Xj4+1, Ti+1) is a factor of (X;, 7;). In this paper, we introduce the
weighted topological pressure P?(71, f) and weighted measure-theoretic entropy 47 (71)
for Z@-actions, and establish a weighted variational principle as

P(Ti, f) = sup {hzm) +/X fdp:me MX, ﬂ)}.

This result not only generalizes some well-known variational principles about topological
pressure for compact or non-compact sets, but also improves the variational principle for
weighted topological pressure in [16] from Z -action topological dynamical systems to
74 -actions topological dynamical systems.
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1. Introduction

Topological pressure, a term motivated by statistical mechanics, was introduced by
Ruelle [36] for expansive dynamical system and later by Walters [42] in the general
case. Considering continuous potential, topological pressure generalizes the definition
of topological entropy by Bowen [4]. Moreover, topological pressure plays an important
role in dimensional theory. For example, for repellers of C!*¥ conformal expanding
maps, Bowen [5] and Ruelle [37] discovered that their Hausdorff dimension is a solution
of Bowen’s equation involving topological pressure. In the non-conformal setting, Cao,
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Pesin and Zhao [7] establish continuity of the sub-additive topological pressure with
singular valued potential and obtain a sharp lower bound of the Hasudorff dimension
of the repeller. Inspired by the entropy variational principle [11, 19, 20] which reveals
the basic relationship between topological entropy and measure-theoretic entropy (see
[24, 38] by Kolmogorov and Sinai), Walters in [42] developed a variational principle for
topological pressure. Precisely, let (X, T') be a topological dynamical system (TDS) with a
compact metric space X and a continuous map 7 : X— X, and f be an arbitrary continuous
real-valued function on X. Then,

P(T, f) = sup {hH(T) +/ fduw:ue MX, T)},
X

where M (X, T') denotes all the T-invariant Borel probability measures on X and 4, (T)
denotes the measure-theoretic entropy of T with respect to .

In [31], Misiurewicz gave a short and elegant proof of the variational principle of
pressure for an action of the group Zﬁ . Soon afterwards, increasingly more attention
has been drawn to extend the classical variational principle of topological pressure to
any countable amenable group actions instead of AN , including [26, 32, 33, 39, 41].
It is worth mentioning that Bowen [3] defined sofic entropy for measure-preserving
actions of countable sofic groups on standard probability measure spaces admitting a
generating partition with finite entropy. Later, Kerr and Li [22, 23] extended Bowen’s
sofic measure-theoretic entropy to all measure-preserving actions of countable sofic groups
on standard probability measure spaces. They also defined sofic topological entropy for
continuous actions of countable sofic groups on compact metric spaces and established
the variational principle between sofic measure-theoretic entropy and sofic topological
entropy. Inspired by their work, Chung [10] introduced the topological pressure of a
continuous function for continuous actions of countable sofic groups on compact metric
spaces, and established the variational principle for it in the sofic context.

However, Carvalho, Rodrigues and Varandas [9] point out the fact that some non-trivial
challenges appear when considering the variational principle for free group actions.
For example, differing from amenable group actions, Borel probability measures which
are invariant by all the generators of a free group action may fail to exist. Due to
this obstacle, [2, 8, 27] only obtained a partial variational principle for free semigroup
actions. To overcome this difficulty, Carvalho, Rodrigues and Varandas [9] defined the
metric-theoretic entropy of a Borel probability measure via the topological pressure for
continuous free semigroup actions inspired by the fact that pressure determines both its
Borel invariant probability measures and the entropy function, cf. Theorems 9.11 and
9.12 of [43]. They also obtained the variational principle of pressure for continuous free
semigroup actions.

Next we elaborate our motivations and main results. Let (X, 7)) and (Y, S) be two TDSs.
Suppose that (Y, S) is a factor of (X, T'), that is to say, there exists a continuous surjective
map 7 : X—Y such that 7 o T = S o 7. The map r is called the factor map from X to
Y. Let f be a continuous real-valued function on X and a = (aj, az) with a; > 0, a; > 0.
Following Pesin—Pistskel’s [35] definition of topological pressure of non-compact subsets,
which resembles the Hausdorff dimension, Feng and Huang [16] defined the a-weighted
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topological pressure of f, denoted by P?(T, f), by a-weighted Bowen balls instead of
Bowen balls. They also obtained the following variational principle:

P3(T, f) = sup {mhM(T) +azh o7 -1(S) ~|—f fdu:pne MX, T)}. (L.1)
X

Equation (1.1) is also a version of the Ledrappier—Young dimension formula [25]. In the
end of [16], the authors asked whether the variational principle for weighted topological
pressure remains valid for Z¢-actions or not. In this paper, we give an affirmative
answer to this question and prove the variational principle for weighted topological
pressure under Z¢-actions. Additionally, before Feng and Huang, Barral and Feng [1, 14]
defined P2(X, f) (and called it weighted topological pressure) by relative thermodynamic
formalism and subadditive thermodynamic formalism, in particular when the underlying
dynamical systems X and Y are shifts over finite alphabets. However, their way to define
P23(X, f)relies on certain properties of subshifts and therefore does not extend to a general
TDS. For this reason, in this paper, we extend Feng and Huang’s [16] approach of defining
weighted topological pressure in the setting of Z4-actions.

Now we introduce the definitions of weighted topological pressure for continuous
potential for Z<-actions topological dynamical systems. Let (X, 7) be a Z%-actions
TDS, where X is a compact metric space with a family of continuous transformations
T :={T® : X— X}y ya satisfying that T? is the identity map and T8 = T€ o T™ for all
g he 74 . Forn,m € N withn < m, let

Api={g=(g1,....80) €Z%: gl <n, 1 <i<d}, A"=A,\Ay,

and \,, := Card A, = 2n — 1)4. For a compact metric space X, let M(X) be the set of
all Borel probability measures on X with the weak*-topology. A measure u € M(X) is
invariant under Z?-actions if (T 8B A B) = 0 for all g € Z¢ and B C B(X), where A
denotes the symmetric difference and B(X) is the o-algebra of subsets of X. In addition,
the Z“-action is called ergodic if any set B C B(X) with u(T 8B A B) = Oforall g € Z¢
has w(B) = 0 or u(B) = 1. Denote by M (X, T) and E(X, T) the sets of all T-invariant
Borel probability measures and ergodic measures on X, respectively. Then M (X, T) # @.
Denote the set of finite Borel-measurable partitions of X by Px. Given o € Py and
un € M(X), define

Hy(@) :=— Y u(A) log u(A).

Aca

When u e M(X,T), the function n e N+ Hu(\/geA,, T 8x) is non-negative
sub-additive for a given o € Px. We can define the measure-theoretic entropy of T
with respect to « as

1 1
h(T, @) == lim )\—Hu< \/ T—ga> = inf )\—HM< \/ T—ga>.
n

neN Ay
geA, geA,
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It is easy to show that the limit exists, cf. [44, Lemma 2.3]. Additionally, the
measure-theoretic entropy of 7~ with respect to u is defined by
hy(T) = sup h, (T, ).
aePyx

Letk > 2,(X;,d;),i =1, ..., k, be compact metric spaces and (X;, 7;) be 74 -actions
topological dynamical systems with 7; := {Tl.g : Xi—>Xi}geza. Assume that for each
1 <i<k-—1, (Xit1, Ti+1) is a factor of (X;, 7;) with a factor map 7 : X;— X;11;
in other words, there exist continuous surjective maps m; : X;— X;4+1 such that
i oTig = Tig+1 om; holds for all 1 <i <k—1 and g € Z4. Let o :=1id on X; and
definet; : X1—>Xij41 byt =miomi_jo---ompfori =0,1,...,k— 1.

Let M(X;) be the set of all Borel probability measures on X; with the weak*-topology.
Denote by M (X;, 7T;) the sets of all T;-invariant (that is, Tig—invariant for each g € Z¢)
Borel probability measures on X;. Fix a = (aj, a2, ..., ax) € RF witha; > Oand a; > 0
for i > 2. Let ap = 0. Write for brevity that ¢; = (ap + - - - + a)? —(ag+-- -+ ai_1)?
fori =1,...,k. For u € M(Xy, T1), denote by

k
ha (Th) = Z cihMo,’:l1 (7o)
i=1

the weighted measure-theoretic entropy of 77 with respect to .

Remark 1.1. If d = 1,thenc; = a; foralli =1, ..., k. In this case, the above definition
coincides with Feng and Huang’s weighted measure-theoretic entropy in [16]. So we
extend their work.

Definition 1.1. (a-weighted Bowen ball) For x € X1, n € N, € > 0, denote

Bi(x,e):={ye Xy :di(TEri_1x, TPt;i_1y) < e forg € Afay+tapmysi =1, ...k}
= {y € X] :d,'(l','_lTlgx, ‘[i_lTlgy) < € forg € A((a1+---+a;)n'|,i =1,..., k},

where [1] denotes the least integer > u. For n € N, define a metric d? on X by
d2(x,y) = sup{d; (TEri_1x, TEvi_1y) fori=1,...,k g€ Afay+-tapn}-
Then
Bi(x,e) ={y € X1 :d(x,y) <€}
We call B2(x, €) the nth a-weighted Bowen ball of radius € centred at x.

Let C(X1) be the space of all continuous real-valued functions on X| with norm || f|| :=
sup,ex, |f(X)].Let Z S X1,5 20, >0, N €N, f € C(X}), and define

] 1
A?:SN,E(Z) = inf Z exp (— Shn; + — sup Z f(T]gx)>,

a .
j 1 xEA/ gEA(alnﬂ

where the infimum is taken over all countable collections I' = {(n;, A;)}; satisfying
nj > N, Aj is Borel subset of Bnaj (x, €) for some x € X and Z € |J; A;. The quantity
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A;';SN (Z) does not decrease as N increases and € decreases, and hence the following
limits exist:

NP = Jim A (D), NP2 = lim A

There exists a critical value of the parameter s, which we will denote by P2(7, f, Z2),
where A"'f’S(Z) jumps from oo to 0, that is,

0, s>P¥T,f,2),

AP (Z) =
A 00, s < PTi, f, 2).

In other words, P2(T1, f, Z) = inf{s : AE}’S(Z) =0} = sup{s : A?S(Z) = 00}.

Definition 1.2. We call P2(Ty, f) := P?(T1, f, X1) the a-weighted topological pressure
of f with respect to 7. Denote by hg,,(7i) := P*(71,0) the a-weighted topological
entropy of 77.

Now we can establish our main result about the variational principle as follows.

THEOREM 1.1. Let f € C(X1). Then

PA(Ti, f) = sup {hzm) +f fdu:ne M(Xl,m}.

X

If we take f =0 in Theorem 1.1, we can directly obtain the following corollary,
which reveals the relationship between a-weighted topological entropy and weighted
measure-theoretic entropy.

COROLLARY 1.2. hg,,(T1) = sup{hf, (T1) : p € M(Xy, Th)}.

The proof of Theorem 1.1 (see §3.3 for details) consists of two parts. In part (i), we
prove the lower of weighted topological pressure P?(71, f), which means P2(7y, f) >
h; (T) + le f du forall uw € M(X1, T1). In part (ii), we give the upper bound estimate
of the weighted topological pressure P2(7;, f). That is to say, for any § > 0, there exists
w € M(X1, Th) such that P*(Ty, f) < h3 (Th) + le fdu+6.

Feng and Huang’s techniques in [16] provide the motivation for our paper. While
considering a 74 _actions TDS rather than (X, T), there are still some problems that need
attention. One should be more careful when dealing with {T® : X— X},.74, a family of
transformations on compact metric space X, than with single 7 on X. First, in the study
of ergodic theory, the invariant measure is necessary. For Z-action (X, T'), the T-invariant
Borel probability measure always exists, cf. [43, Corollary 6.9.1]. As for actions of some
groups G, a well-known result says that when G is an Abelian group, there exists a
G-invariant measure, cf. [13, Theorem 8.11]. Obviously, 74 is an Abelian group. Also,
the ergodic decomposition for a continuous measure-preserving action of Z¢ (see [13,
Theorem 8.20]) may be deduced by Choquet’s theorem, just as for single transformation.
In addition, we need to use Birkhoff’s ergodic theorem in part (i). Given an arbitrary invert-
ible measure-preserving transformation 7' on the probability space (X, T, u), Birkhoff’s
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pointwise ergodic theorem asserts that for any f € L'(X), the averages of f along an orbit
of T, namely the expressions ( f (T " (x)) + - - - + f(T"(x)))/(2n + 1) converge to f*(x)
for w-almost every (a.e) x € X, where f* is the conditional expectation of f with respect
to the o -algebra of T-invariant sets. In particular, if T is ergodic, we have

ST+ (T )
nll;go 2n + 1 _/deM

for p-a.e. x € X. Then it is natural to ask whether, given a family of measure-preserving
transformations {78 : X— X }geza, there is a natural way to average a function f along
the orbits of the group generated by {T® : X— X},.74. Luckily, since Z? is an Abelian
group, T8 and T# commute for all g,, g, € Z?. Ornstein and Weiss [34] proved that the
pointwise ergodic theorem still holds with finite measure-preserving actions of an Abelian
group. Lindenstrauss [28] obtained pointwise ergodic theorem for amenable groups with
respect to tempered Fglner sequences. Then we have

TE
lim MZ/ fdu
X

n—o00 An

for p-a.e. x € X, which will be used in equation (3.10) later. Furthermore, a weighted
version of the Brin—Katok theorem on local entropy is needed. We postpone the proof
of it in Appendix A, based on the Shannon-McMillan—Breiman theorem (see [17]
or [34]) for a family of transformations under 74 -actions. Owing to the work of
Lindenstrauss [28], general covering lemmas were developed to generalize classical
pointwise convergence results to general discrete amenable groups, which are powerful
to obtain Shannon—-McMillan—-Breiman theorem for discrete amenable groups. The above
facts together ensure that we can answer Feng and Huang’s question [16] of extending
the weighted variational principle from Z,-action to Z%-actions, see Theorem 1.1.
Theorem 1.1 also generalizes some well-known variational principles about topological
pressure for compact or non-compact sets in the literature.

Finally, we give the organization of this paper. In §2, we investigate some properties
of certain entropy functions. Section 3 is divided into three subsections. In §3.1, we list
four lemmas which are crucial to prove the main result, including a weighted version of
the Brin—Katok formula, Yan’s lemma [44, Lemma 4.4], a combinatoric lemma and a
dynamical Frostman lemma. In §3.2, we introduce the definition of average a-weighted
topological pressure Pf, (7, f) to prove the dynamical Frostman lemma. In §3.3, we
prove our main result, a variational principle for weighted topological pressure in the
74 actions setting. In §4, we investigate how the pressure P2(7i, f) determines the
weighted measure-theoretic entropy A7 (71). In §5, we give some remarks. In Appendix A,
we prove the weighted version of the Brin—Katok formula.

2. Properties of certain entropy functions

In this section, we first investigate the upper semi-continuity of certain entropy functions,
which are crucial to the upper bound estimate of topological pressure in Theorem 1.1. First,
we give the definition of upper semi-continuity for convenience.
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Definition 2.1. Let X be a compact metric space. A function f : X—[—00, 00) is called
upper semi-continuous if one of the following equivalent conditions holds:

(C1) lim SUpPy, _x f(xn) < f(x) foreach x € X;

(C2) foreachr e R,theset{x € X : f(x) > r}is closed.

Remark 2.1. Theorems 6.4 and 6.5 in [43] together show that if X is a compact metrizable
space, then M (X) is compact and metrizable in the weak*-topology. More precisely, let
{fu};2, be a dense subset of C(X) with || f,,|| # O, then

> |ffndm_ffndﬂl
P10 = 2

n=1

is a metric on M(X) giving the weak*-topology. Additionally, in the weak*-topology,
pn—p in M(X) if and only if [ f du,— [ fdp for all f € C(X). Due to these
facts, we can still use Definition 2.1 to define the upper semi-continuity of some entropy
functions.

Let (X, 7T)bea 74 _actions TDS with metric p.Fore > 0and M € N, we define
Px (e, M) = {a € Px : diam(x) < € and Card(a) < M}, 2.1

and Px(e) = UMeN,PX(e,M);é@ Px (e, M), where diam(«) := max{diam(A) : A € «}.
The following lemma is a slight variant of [16, Lemma 2.3], we omit the proof.

LEMMA 2.1. Let (X, T) be a Z%-actions TDS and € > 0. Then the following hold.
(1) If M € N satisfies Px (e, M) # @, then the map

1
6 € M(X) —~ Hp(e, M;1) ;= inf —H9< \/ Tga> (2.2)
acPyx(e,M) N| y

is upper semi-continuous from M(X) to [0, log M] for each | € N.
(2)  The map

1
0 e M(X)— Hy(e;l):= inf —H, T_goc)
(X) > Hy(e: 1) = inf o= 9<gX1

is a bounded upper semi-continuous non-negative function for eachl € N.
(3) The map

weMX, T h,(T,e):= inf h,(T,a)
ae€Px (€)

is a bounded upper semi-continuous non-negative function.
Remark 2.2. Since Px (€) = U penpy ez Px (€, M), we have

Hy(e; ) = inf Hy(e, M; 1)
MeN, Py (¢,M)#£)
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3318
for 0 € M(X) and
1
hu(T, €)= inf h(T,e)= inf inf —H, T8
(75 aegx(e) w7, ) Dte%lx@) 111211 A M( \/ a)
geA;
1
=inf inf —H T 8x | =inf Hy(e; 1
lnzllote%lx(e) N M( \/ Ol) 1121 6(&:D
geA
for6 e M(X,T).

LEMMA 2.2. Let (X,T) be a Z%-actions TDS and n € M(X). Let a € Px with

Card(a) = M. For n,m € N withn < m, denote
h(n) := Hyp,, s por—s(@) and h(n,m):= Hyjo,-n) 3 por—2(@),

gehn geAy
then:
(i) h(n) <logM and h(n, m) <log M;
(i) |h(n+1) —h(m)| < =/ Mag1) 10g(hn / Mnt1) — (k1 — M) [ N1)
log((Mnt1 = M)/ Mnt1) + 21 — M) /1) log M
(i)  |h(m) = Ohn/ M) (n) = (ki — Mn) /Am)h(n, m)| < log 2.

Proof. (i) is obtained directly from [43, Corollary 4.2.1].
(i) Given 1, ur € M(X) and p € [0, 1], since the function ¢(x) = x log(x) is

convex, if A € «, then
0= ¢(ppi(A) + (A = p)pa(A) — pd(ni(A) — (1 — p)p(ua(A))
= (pu1(A)+ (1= p)u2(A)) log(pu1(A) + (1 = p)ua(A)) — pu1(A) log(ur(A))

— (1 = p)uz(A) log(uz(A))
= pu1(A)[log(pui(A) + (1 — p)ua(A)) — log(pui(A))]
+ A = pua(MDllog(pui(A) + (1 — p)ua(A)) —log((1 — p)ua(A))]

+ pui(A)[log(puri(A)) — log(ni(A))]
+ (1 = p)ua(A)[log((1 — p)ua(A)) — log(ua(A))]
>0+0+ pu1(A)plog p+ u2(A)(1 — p) log(l — p) because log is increasing

In addition,
0< Hpm-i—(l—p)uz(a) - PH;“ (@) — (1 - P)Hm(a)
< —plog p—(1— p)log(l — p) < log 2. 2.3)

For n € N, by (i) and equation (2.3), we have
Ant1 — A
Mh(n)

A Motl — N

h(n+1) — h()| = [h(n + 1) — —"h(n) — 2= M4+ 1) —

Mt Nt Aot

Ml — A
+ 2 P+ 1)
)\n+l

A M Apal— M ) R U VPR |
< — n log n_ n+1 n log n+1 n +2 n+1 n log M.

Mt Mt Mt Ant1 n+1
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(iii) Since A, = A, |J AV, we have

_ZMng_ ( ZMOT) }"”x;x( — ZMOT)

geAm geA geA’"

for m,n € N with n < m. Taking p = N,/ N, 01 = (1/Ny) deAn nwoT 8 and uy =
(1/Oum = Mn)) Dgenm i o T8, then equation (2.3) implies (iii). O

Remark 2.3. Combining (ii) with the fact A,/(Ayi1) = 2n — D?/2n 4+ 1)4—1 as
n—o00 and 0 - log 0 = 0, we gain lim sup,,_, o, |h(n + 1) — h(n)| = 0.

LEMMA 2.3. Let (X, T) be a Z¢-actions TDS and . € M(X). Fore > O0andl, M € N,
let Hy (€, M; 1) be defined as equation (2.2). Then the following statements hold.

(1) Foralln e N,

Hl/xn > HOT*g(G’ M) — H1/>\11+1 > poT% (e, M; 1)
geAp geAnH
_ A IOg A _ )\n—&-l — Ny log >\n+l — N\ + 2)\n+l — N\
)\l)\n+1 )\n-i-l )\-l)\n+1 )\n+1 )\n+l

log M.

(2) Foralln,m € Nwithn < m,

N — \n
—Hip, 5 por-s(€, M; 1>+—H1/<x,,,,xn) s por-e(€, M; 1)

>\m geAn m geAy

log 2

<Hip, Y wor-s(e, M;1)+ (2.4)

g€Am )\'l
Proof. The statements follow from the definition of H,(e, M;Il) as well as
Lemma 2.2. O

3. Variational principle for weighted topological pressure

3.1. Some lemmas. In this section, we give some lemmas which play a significant role
in the proof of weighted variational principle. Recall that for x € X1, n € N, € > 0, the
nth a-weighted Bowen ball of radius € centred at x is defined by

Bi(x,e):={ye Xy :di(TEri_1x, TPt;i_1y) < eforg € Afy+apnsi =1, ..., k}
={yeX;: d,'(Tl'_lTlgx, ‘c,'_lTlgy) <eforge Ar@yteapn]> i =1,.. ., k}.
Letey, ..., e, be the canonical basis for 74, then
TE=Tf o oTf forallg= (g1 ....g1) €Z’

where T ; = T ' and T denotes the g;-fold iteration of T} ;. Hence, if d = 1, then T
is the g1-fold iteration of the map T7. We have extended Feng and Huang’s definition of a
weighted Bowen ball in the Z, -action setting (see [16, Definition 1.2]). For the a-weighted
Bowen ball and weighted measure-theoretic entropy of 77, we can establish the following
theorem similar to the Brin—Katok theorem (see [6, 29]), which contributes to the lower
bound estimate of the weighted topological pressure P2(77, f).
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THEOREM 3.1. For each u € E(Xy, T1), we have

—1 Ba ] Ba
lim lim inf og u(By(x, €)) — 1im lim sup og (B (x, €))

e—>0 n—>00 A =0 nooo n

— he.(T7)
for p-a.e. x € X;.

Remark 3.1. The above theorem extends some well-known results. When a =
(1,0,...,0) and d = 1, Theorem 3.1 reduces to the classical Brin—Katok theorem
on local entropy. When d =1, Feng and Huang [16] established a weighted
version of the Brin—Katok theorem based on the weighted version of the classical
Schannon-McMilian-Breiman theorem, which is a special case of Theorem 3.1. For
the reader’s convenience, we give the proof of Theorem 3.1 in detail and postpone it to
Appendix A.

Inspired by Misiurewicz’s [31] elegant proof of the entropy variational principle, Yan
[44, Lemma 4.4] proved the following.

LEMMA 3.2. Letv € M(X) and o = {Ay, ..., Ay} € Px. Then for any n,l € N with
n > 21, we have

1 1 _ Yin
— H T8 —H T8 fidid
- l)< \/ Ot) < ‘)\-l Vn( \/ a) + i 10g M,

n geA, geA;

where v, = (1)) deAn voT 8 and yi, := \y — Mn—2l.

The following combinatoric lemma was obtained by Feng and Huang [16, Lemma 5.4],
as a slight variant of [21, Lemma 4.1] by Kenyon and Peres.

LEMMA 33. Letp e Nanduj : N—R (j =1, ..., p) be bounded functions with
lim |uj(n+1)—u;n)| =0.
n— o0

Then for any positive numbers c1, . . .,cpandry, ..., rp,

p
lim sup Z(uj(fcinl) —uj([rjn])) = 0.

n—oo .
Jj=1

To give the upper bound estimate in Theorem 1.1, see equation (3.15) later, we show the
following lemma similar to a result due to Frostman.

LEMMA 34. Let f € C(X1). Suppose that P*(Ti, f) > 0. Then for all 0 <s <
Pe(T1, f), there exist v e M(X1) and € > 0, N € N such that for any x € X and
n > N, we have

1
V(BI(r.€) < sup exp(—sxn+—d 3 f(Tfy>>.
a

YEBE (x,€) 1 g€ [ayn

Remark 3.2. The classical Frostman’s lemma [30] says that for any compact set £ C X
with Hausdorff dimension greater than ¢, there exists u € M(X) with u(E) =1 so
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that w(B(x,r)) < cr! for some constant ¢ > 0 and any r > 0, x € X. Adapted from
Howroyd’s elegant argument, Feng and Huang obtained the corresponding non-weighted
version and weighted version of the dynamical Frostman lemma in [16], combining some
ideas in geometric measure theory. The main tool of the proof is the notion of an averaged
a-weighted topological pressure, which is similar to the weighted Hausdorff measure in
geometric measure theory. In our setting of a Z?-actions topological dynamical system,
we give the definition of averaged a-weighted topological pressure and the complete proof
of Lemma 3.4 in the next subsection.

Remark 3.3. We can see from Theorem 3.1 and Lemma 3.4 that the a-weighted Bowen
ball B2(x, €) constructs the bridge to relate weighted measure-theoretic entropy hZ(T) to
weighted topological pressure P?(77, f).

3.2. Averaged a-weighted topological pressure and proof of Lemma 3.4. Let g be an
arbitrary real-valued function on X1, f € C(X1),s > 0,€ > 0, N € N, and define

. 1
Wiy (@) = inf Y " bj exp ( Sha;+— sup Y f(Tlgx)>. 3.1
J 1 XEAJ gEA!'aln il

Here the infimum is taken over all countable collections I' = {(n, A}, b;)}; satisfying
nj > N, Ajis Borel subsetofBa (x, €) forsome x € X1,0<b; <ooandz b]XAJ > g,
where x4 denotes the characterlstlc function of A, that is, x4(x) =1 1f x € A and
xa(x) =0 if x € X1\ A. For Z C X1, set Wf’N’E(Z) = W;,sN,e(Xz)- The quantity
W;SN (Z) does not decrease as N increases and e decreases, and hence the following
limits exist:

Wid(2) = lim Wiy (2), W'(Z) = lim Wi (2).
There exists a critical value of the parameter s, which we will denote by P;‘V T, f, 2),

where W;’S(Z) jumps from oo to 0, that is,

0, s>PyT,f,2),

W?’S(Z) =
: oo, s < Py (T, f.2).
In other words, P§, (71, f, Z) = inf{s : W";’S(Z) =0} = sup{s : W;-’S(Z) = 00).

Definition 3.1. We call P§,(Tq, f) := P, (T, f, X1) the average a-weighted topological
pressure of f with respect to 77.

Essentially, foranys > 0, N € N, ¢ > 0, f € C(X}), both A?;SN . and W;SN . are outer
measures on X, as a direct consequence of their definitions. The next proposition reveals
that they are equivalent to a certain extent.

PROPOSITION 3.5. Let Z C X. Then for any s > 0 and €, § > 0, we have
APTRA(Z) SWELZ) < MYy (2)
when N € N is large enough. Moreover, P*(Ty, f) = Py, (T1, f).

To prove Proposition 3.5, we need the following lemma, obtained in [16, Lemma 3.7].
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LEMMA 3.6. Let (X, d) be a compact metric space and € > 0. Let (E;);cT be a finite
or countable family of subsets of X with diam(E;) < €, and (¢;);eT a family of positive
numbers. Let t > 0. Assume that F C X is such that

F C {x e X: ZCiXE;(x) > t}.
iel
Then F can be covered by no more than (1/t) Y. 7 c; balls with centres in \ J;.7 Ei and
radius 6e.

LEMMA 3.7. Let € > Q. Then there exists y > 0 so that for any n € N, X1 can be covered
by no more than exp(y \,) balls of radius € in metric df.

Proof. Fori=1,...,k, since X; is compact, there exists a finite open cover «; of X;
with diam(e;) < € (in metric d2). Let n € N. Denote

k
B = \/ < \/ Tl_gfi_—l1“i)~

i=1 " €A+ taj)n]
Then § is an open cover of X with diam(8) < € (in metric d3). Hence, X can be covered
by at most Card 8 many balls of radius € in metric d3. Choose y > 0 so that exp y =
]_[f-‘=1 (Card a;)@++ai+1? Then

k
Card g < H(Card o) Mar+am < exp(yhy,),
i=1

which completes the proof. O

Proof of Proposition 3.5. Let Z C X1,s >0,€,8 > 0. If we take g = xz and b; =1
in the definition of equation (3.1), then W;”i(Z) < A?;’SN’ .(Z) for each N € N. Next,
we show that A‘}S;,r ‘é [(2) < W?i (Z) when N e N is large enough. Given y > 0 as in

Lemma 3.7, assume N > 2 so that
2+ 1) exp(y —h8) <1 whenn > N. (3.2)

Let {(n;, A, bi)}icz be a family so that Z C N, A; C B (x,€) for some x € X1,
0 < b; <o0,n; > N and
> bixa, = Xz (3.3)
iel

So we only need to prove that

1
Av6e (@) = ) biexp (—sxn,- tose > f <T1gx>), (3.4)

. a ;
ieZ 1 xedi g€ Aayn;

which implies A?f;%g(Z) < W;’i(Z). Denote Z,, :={i € Z : n; = n},
1

d
1

Y f(TEx), gu(E) := sup gu(x)

geA]'aln‘\ xeE

gn(x) =
a
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for N e N,x € X|, E C X and
Zys = {x e’Z: Z bixa, (x) > t}.
iel,
Now we claim that
AP e Znt) < — Z bi exp(—shn + gu(A)) (3.5)
i€,

foralln > Nand 0 <t < 1.
To prove the claim, assume that n > N and 0 < < 1. Set D = (1/\,,)8gn(Z,). For
£=1,2,...,yandi € Z,, let

1 ¢ -1
T 4n(x) € (D - p- y—} } Aig:=ANZE,

VADRES {x €Znt:
" R M M

and
1
th:Z {xEZ,‘J : }\—gn(x)fD—y}, Aoy = A()ﬂZﬁ’t
n

For¢=0,1,2,...,\,,denote Z,,, :={i € Z, : Aj ¢ # ¥}, then
Zﬁ’t = {x € X Z bixa;,(x) > t}.
iEIn’g
By Lemma 3.6, Zﬁ’t can be covered by at most (1/¢) ZieIM b; balls with centre in

UieIM A; ¢ and radius 6¢ in metric d?. Thenfor ¢ = 1,2, ..., \,,

1
E}S];/‘—ZE(Z t) = ; Z bi eXp(—(s + 8))\)1 + gn(Zﬁ’,))

ieIn,Z
1
<~ eXp(=(s+8)h))e” D bi exp(ga(Ar)
i€ly .
1
< e’ M= N7 b exp(—h A)). 3.6
< VT2 Y b exp(—has + ga(AD) (3.6)

i€l,

In addition, by Lemma 3.7, Zg’, can be covered by at most exp(\,8) balls of radius 6¢
in metric d3. Note that g,(Z, ;) = N, D. For any u < \, D, there exists x € Z,, so that
u < g,(x). For another thing, since x € Z,;, we have ZieZ,, b xa,(x) = t, and therefore

Y hmnzr Y bgpzt Y buza G

iel, i€, xcA; i€l, x€A;
Thus, by equation (3.7),

AR (Z0,) < exp(hy) exp(—ha(s +8) + gu(Z0,))

< exp[hny — ha(s +8) + hn(D — y)]

1
<M= N " by exp(=has + gn(A). (3.8)
f ieZ,
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Combining equations (3.2), (3.6) and (3.8), we have

1
+3 +5 ) ) ‘
AN iseZno) = Z Nf N Zas) = Ot D70 3 i exp(hus +0(4)
ieZ,

Tt D bi exp(—hus + gu(Ai) (3.9)
iel,
which finishes the proof of the claim in advance. It is clear that Y o \ (1/n?) <
Yonl,(1/n?) < 1. Hence, if x ¢ U,y Z,;/n2- then

o0

Db =3 b < S Y b = Y Ssr<l,
iel IEU T n=N i€l, n= N
n=N

thus x ¢ Z by equation (3.3). We can infer that Z C UnZN Z, ;/n2- By equation (3.9),
1 o
APV 6 (D) < Z AN e L) <~ ZN ij bi exp(— s + gu(A1))
n=N iel,

<< 2:; bi exp(—hns + gn(A)).
S

Letting r /' 1, we have A;’;‘Y&F%E (Z) <) ;e7 bi exp(—hys + gn(A;)), which implies that
equation (3.4) holds. ]

LEMMA 3.8. Let s >0, N € N, € > 0. Assume that ¢ := W?-”A}V’G(Xl) > 0. Then there
exists p € M(X1) so that

1
w(By(x, €)) < - exp(—sh, + gn (B (x, €))),
where

1
@ i=— Y5 ST, g(B) = Sup £ (2)
1 EA!’aln'\

forz e X1, E C Xy.

Proof. Obviously, ¢ < co. Define a functional p : C(X;)—R by

1
P(&) = Wiy (g), g€ C(Xy).

Let 1 € C(X1) denote the constant function 1(x) = 1. One can verify that:

(1) p(g+h) =< p@@+ph)forallg, h € C(Xy1);

(2) p(tg) =tp(g) forallt > 0and g € C(Xy);

3 p()=1,0=p(g =< llgll for all g € C(Xy) and p(g) =0 if g € C(Xy) with
g =<0.
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By the Hahn—Banach theorem, we can extend the linear functional ¢ — tp(1), t € R,
from the subspace of the constant functions to a linear functional £ : C(X1)— R satisfying

L(A)=p1)=1 and - p(—g) < L(g) < p(g) forall g € C(Xy).

If ge C(X;) with g >0, then p(—g) =0 and therefore L(g) > 0. Furthermore,
L(1) =1. By the Riesz representation theorem [43, Theorem 6.3], there exists
uw € M(X1) so that L(g) = le gdu for all g e C(Xy). Let x € X1,n> N and
K C B2(x, €) be compact. Then there exists an open set V with K C V C B2(x, €)
so that g,(V) < g,(K) + 6. By the Uryson lemma, there exists g € C(X;) such that
0<g<l,g(zy=1forze Kandg(z) =0forz € X1\ V. Then u(K) < L(g) < p(g).
Since g < xv,n > N, by the definition of W;’,szv,s(g) in equation (3.1), we have
W}’,SN,G (&) < exp(—shy + gn(V)). Therefore, p(g) < (1/c) exp(—sh, + g»(V)) and

1 1
n(K) = - OXp(=sh, + gn(V)) = - OXp(=shn + gn(K) +9).

Letting §—0, we conclude that ©(K) < (1/c) exp(—sk, + g,(K)). Finally, since u is
regular, for the arbitrariness of K C B2(x, €), we have

1
R(By(x, €)) < - exp(—=shy + gn (B, (x, €))). O
Proposition 3.5 and Lemma 3.8 together imply Lemma 3.4.

3.3. Proof of Theorem 1.1

Part (i): lower bound. First, we prove that

PATL, £ = sup {hzm) + [ g diswe mox, To}.
X1

Recall that for each u € M(Xy, 7;), there is a unique measure T on Borel subsets of
M(X1,T1) such that T(E(X1, 7T1)) = 1 and for all f € C(Xy),

/ £ dp(x) = / ( f(x)dm(x)) dx (m).
X E(X1,T1) X

We write u = f EX,.T) mdt (m) and call this the ergodic decomposition (see [13]) of .
For u € E(X1, 7T1), via Birkhoff’s ergodic theorem improved by Ornstein and Weiss [34],
we have
g
lim deA” F(T7x) _

n— 00 >\n X,

fdu (3.10)

for pu-a.e. x € X1. By Jacob’s theorem [43, Theorem 8.4], if u = fE(Xl T mdt(m) is the
ergodic decomposition for u € M (X1, T1), we have

h3 (T =/ h2,(Th) d(m). (3.11)
E(X1,Th)

https://doi.org/10.1017/etds.2022.67 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.67

3326 Q. Huo and R. Yuan

So we only need to prove that
PA(Ti, f) = / fdp+min{s~", h%(T) = 8) — 8 (3.12)
X1

for each § > 0 and u € E(X1, T1). Denote H := min{8~!, h/aL(T]) — 8}. By Theorem 3.1,
choose € > 0 such that

-1 B2
lim inf —1°8 w(B,(x, €))

n—oo }\n

> H for u—ae. x € Xy. (3.13)

Considering equations (3.10), (3.13) and using the Egorov theorem, there exist N € N and
a Borel set Exy C X1 with u(Eyn) > % such that forany x € Ey andn > N,

(BR(x, €)) < exp(=hpH), Y f(TEX) = Nayu ( / fdp— 8>. (3.14)
X1
geAMln]
Choose a countable set I' = {(nj, A)}; such thatn; > N, Uj A = X and there exists
xj € X satisfying A; C B,?j(xj, €/2) foreachj. Denote by Z := {j : A; N Ey # ¥}. For
each j, taking y; € A; N Ey, then A; C Bf,‘j (xj,5) C Bﬁ‘” (vj, €). Therefore, by equation
(3.14), we have

1(Aj) < (B (yj, €)) < exp(—hn; H)

v

— sup Z f(Tlgx)

i gEA[al ”_,‘]

1
— Y f(TEy)
a;

gEA[cqnj'l

Main:
[“'d””< fd/L—ﬁ)Z)\n.(/ fdu—a).
a X1 ! X1

If we choose s = le fdu+ H —§, thenforall j € Z,

exp<_s)»nj + id sup Z f(Tlgx))

a .
1 xEA/ gEA[“l"ﬂ

zexp<—)\nj</ fdu—l—H—(S)—l-)\nj(/ fdu—&))
X4 X

= exp(— o, H) = ju(A)).

Summing over j € Z, we obtain that

1 1
Zexp(—sxnj g sup Y f(fo)) =) w4 2M< U A{,) > W(EN) = 5.
jeT

. a i X
el 1 X€A;j gGAMwﬂ jeT

Then A% (X1) = ATL(X1) = ATy (X1) = 1 > 0 and therefore
PNTi. f)=s= | fdu+min{s", h%(T) — 8} —8.
X

Thus, equation (3.12) holds as desired.
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Part (ii): upper bound. In this section, we will prove that for any f € C(X1) and § > 0,
there exists u € M(X1, T1) such that

PACTL, f) < WA.(TD) +f fdp+s.
X1
Suppose that P2(Tj, f) > 0. Take 0 < s < s’ < P3(Ty, f). Denote by S, f(x) :=
deAn f(Tlgy). Take €y > O such that for x,y € X1: if di(x,y) < €g, then | f(x) —
f| < (' — s)af/([aﬂ + 1)¢. By Lemma 3.4, there exist v € M (X1, T1), € € (0, €o)
and N € N such that

V(Bj(x,€)) < sup exp (-S A+ S(am]f(y))
YEB2(x,€)

1
—dSW1f(x)) (3.15)

< exp (—s)\n +
a
1

forany n > N and x € X. Additionally, there exists 7 € (0, €) such that forany 1 <i <
Jj < k:ifx;, y;i € X; with d; (x;, y;) < 7, then

di(mj_10---omi(x;),mj_10---om(y;)) <e.

Take My € N with Py, (t, Mg) #@fori =1,...,k.Let M e Nwith M > My and o;; €
Px,(r, M) fori =1,...,k Denote p; = rl.__llozi and
My (1) = Afga), i) = ARGETam
forn e Nandi =2, ..., k. Then forany n > N and x € X1, we have
k
\V V T788ikx) S Blx. e). (3.16)

i=1 gell; (n)

Here B;(x) represents the element in 8 containing x. Combining equations (3.15) and
(3.16), we conclude that for any x € X1,

(\/ \/ 7 ﬁ,(x)) <exp(—sx + lsml,ﬂf(x)) (3.17)

i=1 gell; (n)

which implies that

Hv(\k/ \/ Tlg,Bi) =— f logv(\k/ \/ Tlg,Bi(x)> dv(x)

i=1 gell; (n) i=1 gell;(n)
1
> sl = = / Stagn) £ () dV ().
1

Thus,

k
ZHV< \/ Tlgﬂi>zsxn_aid

i=l1 gell; (n) 1

/ Stayn f(x) dv(x). (3.18)
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Denote by to(n) =0,t;(n) =[(a1+---+aj)n]forn e Nandi =1,...,k. Fixl e N
By Lemma 3.2, for sufficiently large n, the left-hand side of equation (3.18) is bounded
from above by

k
M) — M _
) MH%( V1 gﬁi) + Ovemy = My my—21)logM,

1

i=1 geA;
where
-8
. del’[,-(n) vo Tl
Win =
i) — Mi_i(n)
Notice that
[Samswavn =[ 3 rataw=[ 3 favor® =i [ dui,
gGA(a]n'l geA(a]n'l

then by equation (3.18) and the definition of He(t, M;[), we have

Zo‘ti(n) M) H,y, 20T, 1(r M)
i=1

Mayn]
= s)\n - a—d fdwl,n - ()\tk(n) - )\tk(n)—2l)10gM~ (319)
1
Define v, = (deA Vo T )/X for m € N. Since 7; o Tg Tg V1 O T holds for all
1<i<k-1 andgeZ , we have r,_lng_Tlgot,_l.Thus, fori=1,...,k, we
obtain that
-1 -8 -1 -8
1 deA,,, vor, ol -1 den,-(n) vor,_joT;
Vm 0T = > WinOT_1 =
N N (n) = My (n)
and therefore
N N () — Mg
Vs (n) © tiill = fi—1(n) V_1(n) © ‘C 1 + Mwi’n o Tiill. (3.20)
;) Ni; (n)

Here we recall that fg(n) = 0 and ¢;(n) = [(a; + - - - + a;)n] forn € N.
To apply Lemma 2.3, we replace the terms 7, w, n,m by T;,v o rl.__ll, ti_1(n), t;(n),
respectively, and obtain

N1 (n) i) = M (n)
= T, M;l)+ 4 = H T, M;l
N (n) i1 Tz 1( . Nii (n) Wi Ot 1( .
log 2
SHW()WI(IMZ)-’_ N
and

)\‘fi(”)Hv (m)OT;_ I(T M; 1) — ‘}\"i—l(”)H ot I(T M: D)

A, (n) log 2

> o) — )\tifl(”))Hwi,nor:ll (r, M;1) — t(n))\l = .
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Summing this over i from 1 to k and considering equation (3.19), we conclude that

k
@n L= Z(}\ti(n)Hvti(n)Ofiill ('C, M, l) - )\-tifl(n)Hvri,l(n)or,zll (T7 Ma l))
i=1
PN kN log 2
> $hy — % / Fdwiy — Oy — hagy—20)logM — % (3.21)
1
Let Y;(n) := anor_ql (r, M;1). By Lemma 2.3(1),
A A M1 — A Mt1— A Mt1— A
|T,(n)—T,(n+l)|§— n log n__ n+1 nlog n+1 ﬂ+2 n+1 nlOgM.
)\-l)\n+1 )\n+] )\l'}\n+l )\n+1 )‘-n+]
(3.22)

Let

k k
En):= Z Ay (Yi (£ (n)) — Yi(t1(n))) — Z Mz (Yi(ti—1(n)) — Ti(11(n)))

i=2 i=2

k
=0 — Y Oty = iy ) Vi (11 ().
i=1

By equation (3.21), we have

k

i) = M) Nfain]
———TYi(t1(n)) + —f dwi,
; .)\.n 1 aii)\n .f n

. E(n) 4= b = M- logM + klog2 My
M An Vi An

Next we claim that lim sup,,_, ., (—8(n)/\,) > 0. Define

(3.23)

k
Am): =Y (a4 +ai D) (Ni(ti1() = Ti(t1(n)))
i=2

k
=Y (@ + -+ a) (Ti () = Vi (1 ().
i=2
Then lim sup,,_, ..,(—E(n)/\,) = lim sup,,_, ., A(n). To apply Lemma 3.3, in which we
take p = 2k — 2, let
- (ai+---+ap)irjsi(n) ifl<j=<k-1,
ui;jn)=
! —(a1+ -+ ajjs2)jopia(n) ifk < j <2k -2,

and

cimy =T ta ifl<j=<k-1,
g ar+---t+ajkpr ifk<j<2k-2,

and rj =a; for all 1<j<2k—2. Hence, by equation (3.22), we have lim,_,
luj(n +1) —uj@m) =0. Thus, limsup,_, (—E(@n)/\,) =limsup,_, ., A(n) > 0.
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Letting n — oo and taking the upper limit in equation (3.23), we have

k
lim sup (Z[(al o dap)? —(ar 4+ a_) (0 () +/ S dVMn))

k(ay + - - -+ ap)? log 2
> 5 — .

> " (3.24)
Write for brevity that k = (k(a; + - - - + ap)? log 2)/;. Since
c=(@+-+a) —(@+--+a-1)!
fori =1, ..., k, then equation (3.24) can be rewritten as
k
1i£sogp ( > i) + / f dv,l(n)> > 5 — k. (3.25)

i=1
Since M (X1, T1) is compact, we can choose a subsequence {7} such that the left-hand
side of equation (3.25) equals

k
lim (Z CiHth(nj)ori:ll (t, M; 1) +/ f dv,l(nj)) >5—K
i=1

j—o0o
and {v;n;)} converges in M(Xq, T1) for some ¢ € M(Xq, T1). Since Hq(z, M;1) is
upper semi-continuous by Lemma 2.1, we conclude that

k
lim Y ciHy 1 (2, M3 ) +/ fdo=s—«k. (3.26)
i=1

j—=ool

Define

k d 1002
<1>;={(M,z,a):M,leN,5>0witthMo,xlz @+ +an log }

8

and
Qs = {77 € M(X1,Th) : H,?(T,M;l)+/ fdnzs—a},

where H;‘(r, M;l) = Zle Ci Hﬂor—l (t, M;1). Then 27,5 # ¥ since equation (3.26)
i—1

holds whenever (M, [, §) € ®. Moreover, the mapping n € M (X, T1) — H,';‘(r, M; 1)+

[ fdn is upper semi-continuous since the sum of finitely many upper semi-continuous

functions is still upper semi-continuous. By Definition 2.1(C2), Q375 is a non-empty
closed subset of M (X1, 71). Additionally,

Q01810 N My 1,80 2 MMy 111, mins).8,)

for any (Miy,11,381), (M, 15, 8) € ®. Hence, ﬂ(MJ’S)e(b Qupis # 0 for the finite
intersection property characterization of compactness, that is, there exists a ug €
N 1.s)co 2m.1s- Thatis to say,

st(T,M;l)Jr/fdus > 5 -8,
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Therefore,

k
Z; cifl, 1 (ti0) +/ fdps = Md\]i’r;lszo Hj (t, M; 1) +/ fdus>s—36.
1=

Fix § > 0, since \; > (k(a; + - - - + ap)? log 2)/6 when [l € N is large enough, we have

k k
D cihy oo (T T) +/ f dps = inf Do, (@) +/ fdus
i=l1 i=l1

k
= 11_1)121O Zl ciHMsOT,:ll (T3 1) +/ fdus >s—34.
=
Notice that the mapping 6 € M(X1, 71) Zf: 1 ¢ihg (T, T) is upper semi-continuous,
there exists u € M(X1, 71) satisfying Z{F:l cih, (T1, ) + f fdun > s — 8. Further-
more, h, (T1) > hy(Ti, ). Then ki (Th) + [ fdu=>s—34. Letting s / P2(Ti, f), for
the arbitrariness of § > 0, we conclude that P3(7;, f) < hz(ﬂ) + fx1 fdu.

4. Pressure determines measure-theoretic entropy

In this section, based on the weighted variation principle in Theorem 1.1, we investigate
how the pressure P?(7i, f) determines the weighted measure-theoretic entropy £}, (71).
We need the following lemma in [12].

LEMMA 4.1. If K1, Ky are disjoint closed convex subsets of a locally convex linear
topological space V and if K1 is compact, then there exists a continuous real-valued linear
functional F on V such that F (x) < F(y) forallx € K1,y € K».

THEOREM 4.2. Let g € M(X1, T1). Assume that h‘,’op(T]) < 0o and the entropy map

0 € M(X;, Ti)— ho(T;),i =1,...,kareupper semi-continuous at po. Then

W (i) =inf{P“m,f>—/

X

fduolf € C(Xl)}~
Proof. By the variational principle in Theorem 1.1, we have

B (Th) < inf {P*‘(T, = [ sdwire com}.
X
To prove the opposite inequality, fix b > hzo (71) and let

C:={(u, 1) € M(X1, T1) x RIO <t < 1}, (TD)}.

Now we prove that C is a convex set. Given (ui, 1), (U2, 2) € C, that is to say
0<t <hj, (T) and 0 <1 <hj, (T1), for p €0, 1], since the entropy function
€ M(X1,Th) = hj(T1) is affine, we have h;uﬁ(l—p)m(,r]) = ph?, (T)) +
(1 = p)h?, (T1) = pti + (1 — p)ta = 0. Then p(u1, 1) + (1 — p)(pa, 1) € C. Thus C
is a convex set. Additionally, let C(X1)* be the dual space of C(X;) endowed with the
weak* topology and consider C as a subset of C(X1)* x R. Under the assumption of the
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lemma, the mapping 1 € M(X1, T1) = h}(T1) is upper semi-continuous at o, then
(1o, b) ¢ C. To apply Lemma 4.1, let V = C(X1)* x R, K1 = C, K3 = (10, b), then
there exists a continuous linear functional F : C(X;)* x R—R such that

F((1t, 1)) < F((10, b)) forall (u, 1) € C.

Since we are using the weak* topology on C(X1)*, F must have the form F((u,t)) =
le fdu+dt for some feC(X;) and d e R. It follows that le fdu-+dt <
qu f dug + db forall (u, t) € C.In particular, fxl fdp+dni (T < fX] fduwo+db
for all u € M(X1, 71). Taking = g, since b > hzo (71), we have d > 0. Hence,

/

hz(ﬂ)_’_/ idu<b+ =dpg, forallue M(Xi, Th).
X, d X1 d

By Theorem 1.1, we have P?(Ty, f/d) < b+ le f/d dug. Then

b > P“<7'1, i) —/ U dpo > inf{Pa(T,g) —/ gduolg € C(Xl)}-
d x, d X
Letting b N\ hZO(Tl), we conclude that hZo(Tl) > inf{ P2(T1, f) _fxl fduolf €
C(X}. O]

5. Final remarks

As emphasized in the introduction, owing to the research of Ornstein and Weiss [34]
and Lindenstrauss [28], we can extend Feng and Huang’s weighted variational principle
for topological pressure (see [16, Theorem 1.4]) from TDS (X, T) to 74 -actions TDS.
In other words, [28, 34] generalized classical pointwise convergence results to general
amenable discrete groups, and therefore contributed to obtain Birkhoff’s ergodic theorem
and the Schannon—McMillan—Breiman theorem for discrete amenable groups. In this
paper, we only consider the Z4-action, which is a special case of amenable group actions.
Additionally, we believe that the weighted variational principle obtained (see Theorem 1.1)
is valid for pressure under general amenable group actions.

However, while considering a finitely generated free group or semigroup G on a compact
metric space X, [18] or [27, Example 5.3] shows that M (X, G), the invariant measure
space, can be empty. Consequently, the conclusion in Theorem 1.1 may fail in the free
group setting. Alternatively, we can only obtain a partial variational principle like [2, 8,
27]. We propose that this difficulty can be overcome by two different approaches. First,
Theorem 4.2 in this paper shows that the pressure P?(7;, f) determines the weighted
measure-theoretic entropy hZ(Tl). Combined with the explanation in [9], it might be
reasonable to define the weighted measure-theoretic entropy by weighted topological
pressure, rather than the traditional Kolmogrov—Sinai entropy. Second, Feng and Huang
[15] investigate whether there is certain variational relation between Bowen topological
entropy and measure-theoretic entropy for arbitrary non-invariant compact set or Borel
set in general. In this case, one does not expect to have such variational principle on the
invariant measure space. Following the Brin—Katok formula (see [6, 29]), they defined the
measure-theoretic lower entropy and upper entropy and obtained the desired variational
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principle. Later, [40, 45] extend Feng and Huang’s work to topological pressure. Inspired
by [15, 40, 45], to establish the variational principle for weighted topological pressure in
the free group setting, one can similarly define a weighted version of measure-theoretic
lower entropy and upper entropy by weighted Bowen balls. This will avoid the difficulty
that the invariant measure under free group actions may fail to exist. Since new ideas and
techniques must be considered, we leave the above meaningful work for further research.

Acknowledgements. The authors would like to thank the referee for many valuable
comments which helped to improve the manuscript. The authors are supported by National
Natural Science Foundation of China (No. 11771044, 12171039) and National Key Research
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A. Appendix. A weighted version of the Brin—Katok theorem

In this section, we give the proof of a weighted version of the Brin—Katok theorem. First,
we recall some notation. Let (X, 7) be a Z%-actions TDS. Set a = (ay, . . ., ax) € R¥
satisfying a; > 0 and a; > 0 for i > 2. Make the convention ag = 0. Write for brevity
that ¢; = (ao+---+a)? — (@ +---+a;_)? for i =1,...,k Denote II;(n)=

AFEZgj: iZﬁ)'ﬂnr to(n) = 0,4;(n) = [(a1 +---+aj)n] forn e Nandi = 1,. .., k.

LEMMA A.l. ([17] Shannon—-McMillan-Breiman) Let (X, B(X), u, T) be an ergodic
measure preserving dynamical system and a € Px with H, (a) < 0o. Then

lim LI < \/ T_got>(x)=hu(7', o)

n— 00 )\
8EA,

for p-a.e. x € X, where I,(a)(x) = — ZAea xa(x) log u(A) for o € Px denotes the
information function.

As a consequence of Lemma A.1, we have the following lemma.

LEMMA A.2. Let w € E(X,T). Let k > 1 and «y, . .., ar € Px be k finite partitions
with Hy, (o) < oo for each i. Then

Ill(\/ZF:l \/gGA,.(N) T_goz,-)(x) k k
Jim o = ; cihy (T, \/ a,) (A1)

j=i

for p-a.e. x € X. In particular, if o1 > ap > - - - > o, then

k - k
lim Li(Viz \/gel'[i(N) T 8aj)(x) Z

N—o0 AN M(T o) (A2)

for p-a.e. x € X.
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Proof. Fix N eN. Note that A, =AF™)\ UA, v for i=1,....k and

Vit Veenyon T80 = Vie V,, R T-2(\/*_ ). In addition, I,(aV B) =
li—1

I, (a) + 1,(B) forall o, B € Px. Thus

k —en gk
L.V, \/gEAti(N) T2a)(x) WNVizi ngAZ(,AII)(m T8\ o)) (x)

>\N )\N
~ i I“(\/gEAZ(fT)(N) T7E(\V5 @) )
= v
_ Zf:l Iﬂ(\/gEAzi(N)T_g(\/];:i a/))(x) - Zf:l IM(\/geA,i_l(N)T_g(\/];:i O‘j))(x)
= - i

and therefore by Lemma A.2,

k _
) Li(Vizy \/geA,.(N)T Baj) (x)
lim !

N—o0 AN

IM(\/geA,i(N)T_g(\/];:[ o)) (x)

k
= Z(ao +ota)? Nlim
i=1

—00 A (V)
— k
k d 1 IM(\/geA,Fl(N) T78(\/jo @) ()
=Y @+ +a-p? lim
izl N=o9 [ TEY)

k

k k

= Z(ao + - +ai)dhu(7', \/ Otj) —
i=1 j=i i
k k

= Z C,‘hu<7-, \/ Olj).
i=1 j=i

k
(ap+- - +a,~_1)dhu(7', \/ O[j)
! Y

J=t

Then equation (A.1) holds and equation (A.1) implies equation (A.2) obviously. O

The following lemma is similar to [43, Theorem 8.3], we omit the proof.

LEMMA A.3. Let (X, T) bea Z%-actions TDS. Let (ozn);’o | C Px such that diam(a,)—0

as — o0. Forevery p € M(X,T), hy(T) = limy 00 B (T, o).

Proof of Theorem 3.1. Lete >0, u € E(X1,71) and o; € Px;(e),i =1, ..., k. Given
n € Nand x € X1, by Definition 1.1, we have

k
\/ \/ Tligff_llai(x)EB,?(x,e).
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Hence, for p-a.e. x € X1,

k - 1
“log p(B, ) _ o 1Vizt Veerno Ti 51 @i(x))

lim sup
n—00 An n—00 n
L(Vi o T8 i) & ¢
= lim sup nViz \/gen‘(n) Ll e = Z cihy (T, \/ Tj__llaj)
n—oo )\'Vl

i=1 j=i

k
(Tt (wv V worom )

Il
.M*‘

i=1 Jj=i+1
k k
_ . "y LI -1 .
- Z Clhli"fi:ll <77’ oV \/ T o° © nj—laj)
iz =it

=

-

Ci it (TD) = i (T0).

1

1

Next we show that for any § > 0, there exist ¢ > 0 and a measurable set D C X so that
u(D) >1—36 and

-1 B2
lim inf og 1(B,(x, €)) .

n—oo }\n

1
min {E,hZ(Tl) —8} — 2+ 2(ay +"'+ak)d]5

for each x € D.
Fix § > 0. By [43, Lemma 8.5 and Theorem 8.3], we can choose 8; = {Bi, c, iji} €

Py, fori =1,...,k,sothat po 1'17_1] (0B;i) = 0 and diam(;) are small enough and

1
_ ifh 1 (T;) = o0,
Hot; _
Bt (T ) = 1 1° 5 !
" h 1 (7;)) — ——— otherwise.
HoT; 4 c1 + o+ Ck
Define o; € Py, recursively fori =k, k —1,..., 1 by setting oy = B and

Otj=,3j\/7T]1(Olj+1) forj=k—1,...,1.

Then:

() o =77 (i), thatis, 7 ey = 1ty fori =1, ... k= 1;

(@) Xi ity (Th i) = min{1/8, i (TD) = 8);

(3) wotr (@) =0fori=1,.... k.

Writea; = {A,..., Al }fori =1,... k. Let M = maxi<j<; ujand ¥ = {1,..., M}.
Givenm € N, fors = (si);":_ol, t= (s,-);":_o1 € Wi0-m=1} ‘the Hamming distance between
s and t is defined by

1
Hamg s, t) := - Card{i € {0,...,m — 1} :s; # 1;}.
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Fors € Wi0m=land0 < v < 1, let Q(s, 7) be the total number of those t € Y0....m—1}
satisfying Ham(s, t) < 7. Then

By the Stirling formula, there exists a small §; > 0 and a positive C := C(§, M) > 0 so

that
m pMmdil < mtC (A3)
[mdy] -
forallm € N.
For n > 0, set

Uplei) = {x € X1 : B(imix,n) (im0}, i= 1. k.

Then ﬂn>0 U,;(ai) = rlf_ll (qu) and therefore M(U,é(ai))au(rf_ll (daj)) as n | 0. We

can choose € > 0 so that,u(U,;(o:i)) <8y forany0) <n <eandi =1,...,k. Notice that

Zf;l ci = (a1 + - - - + ag)?, by Birkhoff’s ergodic theorem, for j-a.e. x € X1, we have
[ 1

k
lim i(q: Tgx e ——— C; Ui o < 5 .
n—00 A, ) E : z XU((Oll)( 1 ) (@ +-~-+ak)d Z i ( e( i) 1

k i=1 gell;(n) izl

Thus, there exists £ € N large enough so that £(Ay) > 1 — & for any £ > £, where

k

1

Ay = {x €X: DD xuien(TEx) <8 foralln > z}.
W) 21 ger; (n)

incety o) =T, oy >x--->=T_ 0, emma A.2, we have
Since ;! - !k, by L A2, we h
1 k T, %
. —log (Vi \/gel'l,-(n) 1T i(x)
lim
n— 00 )\n

k k
= Z cihu(Ti, T i) = Z Ciltyor-t (Ti, i)
i=1

i=1
for p-a.e. x € X1. Then there exists £1 € N large enough so that u(By) > 1 — § for any
£ > {1, where By is the set of all points x € X so that

k —g _
—log M(\/izl \/gen,-(n) T, gTi_llai(x))
An

k
=D iy (Tiei) =8 (A4)
i=1

foralln > £. Fix £ > max{{g, £1}. Setting E = A; N By, then u(E) > 1 —25.Forx € X
and n € N, the unique element

C(n. x) = (Cg(n, X))gen,
in Wrao = satisfying Tfx € 17} (AL () forg € (), i = 1, k is called

the ({ai}f.‘zl, a; n)-name of x. Since each point in one atom A of \/gel'li(n) Tl_gtljl o;(x)
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has the same ({ai}f?: |» @; n)-name, we define
C(n, A) :=C(n,x)

for any x € A, which is called the ({ai}le, a; n)-name of A.

If y € Bi(x,¢€),thenfori =1, ..., kand g € I1;(n), either Tlgx and Tlgy belong to the
same element of riillai or Tlgx € Ué (o;). Thus, if x € E,n > £ and y € B2(x, €), then
Ham(C (n, x), C(n, y)) < é1, that is, the Hamming distance between ({ai}ﬁ.‘zl, a; n)-name
of x and y does not exceed §;. Moreover, B2(x, €) is contained in the set of points y
whose ({ozi}f.‘:l, a; n)-name is §1-close to ({ai}f.‘zl, a; n)-name of x. More precisely, for
xeE,n>{¢,

B3(x,¢€) C {y € X1 : Ham(C(n, x), C(n, y)) < &1}

k
- {A e/ ( \/ Tl_gtl._llai) : Ham(C (n, A), C(n, y)) < 51} =: Q,(x).

i=1 " gell;(n)
(A.5)
In addition, by equation (A.3),
Card Q, (x) < ( )\.tk(") )Mr)\,k(n)(sl] < eéx,k(,,)JrC. (A6)
[N mdi]

For n € N, denote by E, the sets of points x € E so that there exists an element
k -8 _—1 :
Ae \/izl(\/gel'li(n) T1 Tiilot,') with

k
n(A) > exp {(_ Z Cihyoe 1t (Tis i) + 2+ (a1 +- - + ak)d]rs))\n}
i=1

and Ham(C (n, x), C(n, A)) < §1. Obviously, ifx € E \ E,, foreach A € \/f'{zl(\/gel'li(n)
T, %7\ ;) with Ham(C (n, x), C(n, A)) < 81, one has

k
i(A) < exp {( = il (Tio ) + 24+ (a1 ++ - + ak)"Ja) xn}. (A7)
i=1

In the following, we wish to estimate pu(E,) forn > £.
Letn > £. Set

k
T = {A e/ < \/ Tl_grilloe,) L L(A)

i=1 gell; (n)
k
> exp {(‘ > Cihyort (Tis i) + 24 (a1 + -+ ak)d]5>>\n}}~
i=1
Since 1 (X1) = 1, we have

k
Card F, <exp {( Z c,-hlwf__l1 Tiya)) — 2+ (@ +---+ ak)d]5>>\n}-
i=1 .
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Additionally, by the definition of E,,, there exists A € F,, with Ham(C (n, x), C (n, A)) <4;.
That is to say, the ({ot,'}f.‘zl, a; n)-name of A is §1-close to the ({ai}le, a; n)-name of

k
\/( \/ Tlgti__llai>(x).

i=1 " gell;j(n)

Denote by G, the set of all elements B € \/f-‘=1 (Vgen; o) T, %t~ 1] ;) satisfying

i—

k
(B) < exp {( ; Ciyget (Ti i) = a)xn}
and Ham(C (n, B), C(n, A)) < 6; for some A € F,. Then
E, Cc{B:Be€g,). (A.8)
Fix A € F,, the total number of B € \/fle(\/geni(n) Tl_gr._llcxi), whose ({oti}fle, a; n)-

i—
k

‘_,,a;n)-name of A, is upper bounded by ( P m )

name is §j-close to the ({¢;} o]
rkn

MMadT < By +C Thep

Card G, < &®* @+ Card F,
k
< exp {( ) Cihygrt (Tisoi) =2+ (@1 +- - + ak)d]rS))\n + 8 + C}~
i=1
In addition, combining equation (A.8) and the definition of G,,, we obtain
k
W(En) < {( =D il (Tioi) + 5) xn} Card G,
i=1

< exp { — 0N +C+ [Ny — (@1 +- - -+ ak)d)\n](S}.

Notice that limy,— oo (Mg (n) — (@1 + - - - + @) Nn) /hn) =0. Thus, p(E,) < e~ FCFo0m)

when 7 is large enough. So we can choose ¢> > ¢ such that Z;.zifz Ww(E,) < 8. Then

,u(UnZz2 E,;) < §. Setting D = E \ Unzez E,, we have u(D) > 1 —38. For x € D and
n > £, since x € E,, combining equations (A.5), (A.6) and the definition of E,,, one has

k
W(B(x, €) < e”um*C exp {<_Z o, T @) + 2+ (@t 4 ak)d]5>x,, }
i=1

Thus, for x € D,

— log u(B®
lim inf — 28 #Br(x: ©))

n—00 n

k
= 3 ey (5 i) = 124 2@ + -+ )13
i=1

1
> min {E,hZ(Tl) —8} —[2+2(ar + - - +ap)18. O
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