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Abstract. Let k ≥ 2 and (Xi , Ti ), i = 1, . . . , k, be Zd -actions topological dynamical
systems with Ti := {T g

i : Xi→Xi}g∈Zd , where d ∈ N and f ∈ C(X1). Assume that for
each 1 ≤ i ≤ k − 1, (Xi+1, Ti+1) is a factor of (Xi , Ti ). In this paper, we introduce the
weighted topological pressure P a(T1, f ) and weighted measure-theoretic entropy ha

μ(T1)

for Zd -actions, and establish a weighted variational principle as

P a(T1, f ) = sup
{
ha

μ(T1) +
∫

X1

f dμ : μ ∈ M(X1, T1)

}
.

This result not only generalizes some well-known variational principles about topological
pressure for compact or non-compact sets, but also improves the variational principle for
weighted topological pressure in [16] from Z+-action topological dynamical systems to
Zd -actions topological dynamical systems.

Key words: weighted topological pressure, Zd-actions, variational principle, factor maps,
geometric measure theory
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1. Introduction
Topological pressure, a term motivated by statistical mechanics, was introduced by
Ruelle [36] for expansive dynamical system and later by Walters [42] in the general
case. Considering continuous potential, topological pressure generalizes the definition
of topological entropy by Bowen [4]. Moreover, topological pressure plays an important
role in dimensional theory. For example, for repellers of C1+γ conformal expanding
maps, Bowen [5] and Ruelle [37] discovered that their Hausdorff dimension is a solution
of Bowen’s equation involving topological pressure. In the non-conformal setting, Cao,
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Pesin and Zhao [7] establish continuity of the sub-additive topological pressure with
singular valued potential and obtain a sharp lower bound of the Hasudorff dimension
of the repeller. Inspired by the entropy variational principle [11, 19, 20] which reveals
the basic relationship between topological entropy and measure-theoretic entropy (see
[24, 38] by Kolmogorov and Sinai), Walters in [42] developed a variational principle for
topological pressure. Precisely, let (X, T ) be a topological dynamical system (TDS) with a
compact metric space X and a continuous map T : X→X, and f be an arbitrary continuous
real-valued function on X. Then,

P(T , f ) = sup
{
hμ(T ) +

∫
X

f dμ : μ ∈ M(X, T )

}
,

where M(X, T ) denotes all the T-invariant Borel probability measures on X and hμ(T )

denotes the measure-theoretic entropy of T with respect to μ.
In [31], Misiurewicz gave a short and elegant proof of the variational principle of

pressure for an action of the group ZN+ . Soon afterwards, increasingly more attention
has been drawn to extend the classical variational principle of topological pressure to
any countable amenable group actions instead of ZN+ , including [26, 32, 33, 39, 41].
It is worth mentioning that Bowen [3] defined sofic entropy for measure-preserving
actions of countable sofic groups on standard probability measure spaces admitting a
generating partition with finite entropy. Later, Kerr and Li [22, 23] extended Bowen’s
sofic measure-theoretic entropy to all measure-preserving actions of countable sofic groups
on standard probability measure spaces. They also defined sofic topological entropy for
continuous actions of countable sofic groups on compact metric spaces and established
the variational principle between sofic measure-theoretic entropy and sofic topological
entropy. Inspired by their work, Chung [10] introduced the topological pressure of a
continuous function for continuous actions of countable sofic groups on compact metric
spaces, and established the variational principle for it in the sofic context.

However, Carvalho, Rodrigues and Varandas [9] point out the fact that some non-trivial
challenges appear when considering the variational principle for free group actions.
For example, differing from amenable group actions, Borel probability measures which
are invariant by all the generators of a free group action may fail to exist. Due to
this obstacle, [2, 8, 27] only obtained a partial variational principle for free semigroup
actions. To overcome this difficulty, Carvalho, Rodrigues and Varandas [9] defined the
metric-theoretic entropy of a Borel probability measure via the topological pressure for
continuous free semigroup actions inspired by the fact that pressure determines both its
Borel invariant probability measures and the entropy function, cf. Theorems 9.11 and
9.12 of [43]. They also obtained the variational principle of pressure for continuous free
semigroup actions.

Next we elaborate our motivations and main results. Let (X, T ) and (Y , S) be two TDSs.
Suppose that (Y , S) is a factor of (X, T ), that is to say, there exists a continuous surjective
map π : X→Y such that π ◦ T = S ◦ π . The map π is called the factor map from X to
Y. Let f be a continuous real-valued function on X and a = (a1, a2) with a1 > 0, a2 ≥ 0.
Following Pesin–Pistskel’s [35] definition of topological pressure of non-compact subsets,
which resembles the Hausdorff dimension, Feng and Huang [16] defined the a-weighted
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topological pressure of f, denoted by P a(T , f ), by a-weighted Bowen balls instead of
Bowen balls. They also obtained the following variational principle:

P a(T , f ) = sup
{
a1hμ(T ) + a2hμ◦π−1(S) +

∫
X

f dμ : μ ∈ M(X, T )

}
. (1.1)

Equation (1.1) is also a version of the Ledrappier–Young dimension formula [25]. In the
end of [16], the authors asked whether the variational principle for weighted topological
pressure remains valid for Zd -actions or not. In this paper, we give an affirmative
answer to this question and prove the variational principle for weighted topological
pressure under Zd -actions. Additionally, before Feng and Huang, Barral and Feng [1, 14]
defined P a(X, f ) (and called it weighted topological pressure) by relative thermodynamic
formalism and subadditive thermodynamic formalism, in particular when the underlying
dynamical systems X and Y are shifts over finite alphabets. However, their way to define
P a(X, f ) relies on certain properties of subshifts and therefore does not extend to a general
TDS. For this reason, in this paper, we extend Feng and Huang’s [16] approach of defining
weighted topological pressure in the setting of Zd -actions.

Now we introduce the definitions of weighted topological pressure for continuous
potential for Zd -actions topological dynamical systems. Let (X, T ) be a Zd -actions
TDS, where X is a compact metric space with a family of continuous transformations
T := {T g : X→X}g∈Zd satisfying that T 0 is the identity map and T g+h = T g ◦ T h for all
g, h ∈ Zd . For n, m ∈ N with n < m, let

�n := {g = (g1, . . . , gd) ∈ Zd : |gi | < n, 1 ≤ i ≤ d}, �m
n = �m \ �n,

and λn := Card �n = (2n − 1)d . For a compact metric space X, let M(X) be the set of
all Borel probability measures on X with the weak*-topology. A measure μ ∈ M(X) is
invariant under Zd -actions if μ(T −gB � B) = 0 for all g ∈ Zd and B ⊂ B(X), where �
denotes the symmetric difference and B(X) is the σ -algebra of subsets of X. In addition,
the Zd -action is called ergodic if any set B ⊂ B(X) with μ(T −gB � B) = 0 for all g ∈ Zd

has μ(B) = 0 or μ(B) = 1. Denote by M(X, T ) and E(X, T ) the sets of all T -invariant
Borel probability measures and ergodic measures on X, respectively. Then M(X, T ) 	= ∅.
Denote the set of finite Borel-measurable partitions of X by PX. Given α ∈ PX and
μ ∈ M(X), define

Hμ(α) := −
∑
A∈α

μ(A) log μ(A).

When μ ∈ M(X, T ), the function n ∈ N �→ Hμ(
∨

g∈�n
T −gα) is non-negative

sub-additive for a given α ∈ PX. We can define the measure-theoretic entropy of T
with respect to α as

hμ(T , α) := lim
n→∞

1
λn

Hμ

( ∨
g∈�n

T −gα

)
= inf

n∈N
1
λn

Hμ

( ∨
g∈�n

T −gα

)
.
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It is easy to show that the limit exists, cf. [44, Lemma 2.3]. Additionally, the
measure-theoretic entropy of T with respect to μ is defined by

hμ(T ) := sup
α∈PX

hμ(T , α).

Let k ≥ 2, (Xi , di), i = 1, . . . , k, be compact metric spaces and (Xi , Ti ) be Zd -actions
topological dynamical systems with Ti := {T g

i : Xi→Xi}g∈Zd . Assume that for each
1 ≤ i ≤ k − 1, (Xi+1, Ti+1) is a factor of (Xi , Ti ) with a factor map π : Xi→Xi+1;
in other words, there exist continuous surjective maps πi : Xi→Xi+1 such that
πi ◦ T

g
i = T

g
i+1 ◦ πi holds for all 1 ≤ i ≤ k − 1 and g ∈ Zd . Let π0 := id on X1 and

define τi : X1→Xi+1 by τi = πi ◦ πi−1 ◦ · · · ◦ π0 for i = 0, 1, . . . , k − 1.
Let M(Xi) be the set of all Borel probability measures on Xi with the weak*-topology.

Denote by M(Xi , Ti ) the sets of all Ti-invariant (that is, T
g
i -invariant for each g ∈ Zd )

Borel probability measures on Xi . Fix a = (a1, a2, . . . , ak) ∈ Rk with a1 > 0 and ai ≥ 0
for i ≥ 2. Let a0 = 0. Write for brevity that ci = (a0 + · · · + ai)

d − (a0 + · · · + ai−1)
d

for i = 1, . . . , k. For μ ∈ M(X1, T1), denote by

ha
μ(T1) :=

k∑
i=1

cihμ◦τ−1
i−1

(Ti )

the weighted measure-theoretic entropy of T1 with respect to μ.

Remark 1.1. If d = 1, then ci = ai for all i = 1, . . . , k. In this case, the above definition
coincides with Feng and Huang’s weighted measure-theoretic entropy in [16]. So we
extend their work.

Definition 1.1. (a-weighted Bowen ball) For x ∈ X1, n ∈ N, ε > 0, denote

Ba
n(x, ε) : = {y ∈ X1 : di(T

g
i τi−1x, T

g
i τi−1y) < ε for g ∈ �
(a1+···+ai )n�, i = 1, . . . , k}

= {y ∈ X1 : di(τi−1T
g
1 x, τi−1T

g
1 y) < ε for g ∈ �
(a1+···+ai )n�, i = 1, . . . , k},

where 
u� denotes the least integer ≥ u. For n ∈ N, define a metric da
n on X1 by

da
n(x, y) = sup{di(T

g
i τi−1x, T

g
i τi−1y) for i = 1, . . . , k, g ∈ �
(a1+···+ai )n�}.

Then

Ba
n(x, ε) = {y ∈ X1 : da

n(x, y) < ε}.
We call Ba

n(x, ε) the nth a-weighted Bowen ball of radius ε centred at x.

Let C(X1) be the space of all continuous real-valued functions on X1 with norm ‖f ‖ :=
supx∈X1

|f (x)|. Let Z ⊆ X1, s ≥ 0, ε > 0, N ∈ N, f ∈ C(X1), and define

�
a,s
f ,N ,ε(Z) = inf

∑
j

exp
(

− sλnj
+ 1

ad
1

sup
x∈Aj

∑
g∈�
a1nj �

f (T
g

1 x)

)
,

where the infimum is taken over all countable collections 	 = {(nj , Aj)}j satisfying
nj ≥ N , Aj is Borel subset of Ba

nj
(x, ε) for some x ∈ X1 and Z ⊆ ⋃

j Aj . The quantity
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�
a,s
f ,N ,ε(Z) does not decrease as N increases and ε decreases, and hence the following

limits exist:

�
a,s
f ,ε(Z) = lim

N→∞ �
a,s
f ,N ,ε(Z), �

a,s
f (Z) = lim

ε→0
�

a,s
f ,ε(Z).

There exists a critical value of the parameter s, which we will denote by P a(T1, f , Z),
where �

a,s
f (Z) jumps from ∞ to 0, that is,

�
a,s
f (Z) =

{
0, s > P a(T1, f , Z),

∞, s < P a(T1, f , Z).

In other words, P a(T1, f , Z) = inf{s : �
a,s
f (Z) = 0} = sup{s : �

a,s
f (Z) = ∞}.

Definition 1.2. We call P a(T1, f ) := P a(T1, f , X1) the a-weighted topological pressure
of f with respect to T1. Denote by ha

top(T1) := P a(T1, 0) the a-weighted topological
entropy of T1.

Now we can establish our main result about the variational principle as follows.

THEOREM 1.1. Let f ∈ C(X1). Then

P a(T1, f ) = sup
{
ha

μ(T1) +
∫
X1

f dμ : μ ∈ M(X1, T1)

}
.

If we take f = 0 in Theorem 1.1, we can directly obtain the following corollary,
which reveals the relationship between a-weighted topological entropy and weighted
measure-theoretic entropy.

COROLLARY 1.2. ha
top(T1) = sup{ha

μ(T1) : μ ∈ M(X1, T1)}.
The proof of Theorem 1.1 (see §3.3 for details) consists of two parts. In part (i), we

prove the lower of weighted topological pressure P a(T1, f ), which means P a(T1, f ) ≥
ha

μ(T1) + ∫
X1

f dμ for all μ ∈ M(X1, T1). In part (ii), we give the upper bound estimate
of the weighted topological pressure P a(T1, f ). That is to say, for any δ > 0, there exists
μ ∈ M(X1, T1) such that P a(T1, f ) ≤ ha

μ(T1) + ∫
X1

f dμ + δ.
Feng and Huang’s techniques in [16] provide the motivation for our paper. While

considering a Zd -actions TDS rather than (X, T ), there are still some problems that need
attention. One should be more careful when dealing with {T g : X→X}g∈Zd , a family of
transformations on compact metric space X, than with single T on X. First, in the study
of ergodic theory, the invariant measure is necessary. For Z-action (X, T ), the T-invariant
Borel probability measure always exists, cf. [43, Corollary 6.9.1]. As for actions of some
groups G, a well-known result says that when G is an Abelian group, there exists a
G-invariant measure, cf. [13, Theorem 8.11]. Obviously, Zd is an Abelian group. Also,
the ergodic decomposition for a continuous measure-preserving action of Zd (see [13,
Theorem 8.20]) may be deduced by Choquet’s theorem, just as for single transformation.
In addition, we need to use Birkhoff’s ergodic theorem in part (i). Given an arbitrary invert-
ible measure-preserving transformation T on the probability space (X, T , μ), Birkhoff’s
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pointwise ergodic theorem asserts that for any f ∈ L1(X), the averages of f along an orbit
of T, namely the expressions (f (T −n(x)) + · · · + f (T n(x)))/(2n + 1) converge to f ∗(x)

for μ-almost every (a.e) x ∈ X, where f ∗ is the conditional expectation of f with respect
to the σ -algebra of T-invariant sets. In particular, if T is ergodic, we have

lim
n→∞

f (T −n(x)) + · · · + f (T n(x))

2n + 1
=

∫
X

f dμ

for μ-a.e. x ∈ X. Then it is natural to ask whether, given a family of measure-preserving
transformations {T g : X→X}g∈Zd , there is a natural way to average a function f along
the orbits of the group generated by {T g : X→X}g∈Zd . Luckily, since Zd is an Abelian
group, T g1 and T g2 commute for all g1, g2 ∈ Zd . Ornstein and Weiss [34] proved that the
pointwise ergodic theorem still holds with finite measure-preserving actions of an Abelian
group. Lindenstrauss [28] obtained pointwise ergodic theorem for amenable groups with
respect to tempered Følner sequences. Then we have

lim
n→∞

∑
g∈�n

f (T gx)

λn

=
∫

X

f dμ

for μ-a.e. x ∈ X, which will be used in equation (3.10) later. Furthermore, a weighted
version of the Brin–Katok theorem on local entropy is needed. We postpone the proof
of it in Appendix A, based on the Shannon–McMillan–Breiman theorem (see [17]
or [34]) for a family of transformations under Zd -actions. Owing to the work of
Lindenstrauss [28], general covering lemmas were developed to generalize classical
pointwise convergence results to general discrete amenable groups, which are powerful
to obtain Shannon–McMillan–Breiman theorem for discrete amenable groups. The above
facts together ensure that we can answer Feng and Huang’s question [16] of extending
the weighted variational principle from Z+-action to Zd -actions, see Theorem 1.1.
Theorem 1.1 also generalizes some well-known variational principles about topological
pressure for compact or non-compact sets in the literature.

Finally, we give the organization of this paper. In §2, we investigate some properties
of certain entropy functions. Section 3 is divided into three subsections. In §3.1, we list
four lemmas which are crucial to prove the main result, including a weighted version of
the Brin–Katok formula, Yan’s lemma [44, Lemma 4.4], a combinatoric lemma and a
dynamical Frostman lemma. In §3.2, we introduce the definition of average a-weighted
topological pressure P a

W(T1, f ) to prove the dynamical Frostman lemma. In §3.3, we
prove our main result, a variational principle for weighted topological pressure in the
Zd -actions setting. In §4, we investigate how the pressure P a(T1, f ) determines the
weighted measure-theoretic entropy ha

μ(T1). In §5, we give some remarks. In Appendix A,
we prove the weighted version of the Brin–Katok formula.

2. Properties of certain entropy functions
In this section, we first investigate the upper semi-continuity of certain entropy functions,
which are crucial to the upper bound estimate of topological pressure in Theorem 1.1. First,
we give the definition of upper semi-continuity for convenience.
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Definition 2.1. Let X be a compact metric space. A function f : X→[−∞, ∞) is called
upper semi-continuous if one of the following equivalent conditions holds:
(C1) lim supxn→x f (xn) ≤ f (x) for each x ∈ X;
(C2) for each r ∈ R, the set {x ∈ X : f (x) ≥ r} is closed.

Remark 2.1. Theorems 6.4 and 6.5 in [43] together show that if X is a compact metrizable
space, then M(X) is compact and metrizable in the weak*-topology. More precisely, let
{fn}∞n=1 be a dense subset of C(X) with ‖fn‖ 	= 0, then

D(m, μ) =
∞∑

n=1

| ∫
fn dm − ∫

fn dμ|
2n‖fn‖

is a metric on M(X) giving the weak*-topology. Additionally, in the weak*-topology,
μn→μ in M(X) if and only if

∫
f dμn→

∫
f dμ for all f ∈ C(X). Due to these

facts, we can still use Definition 2.1 to define the upper semi-continuity of some entropy
functions.

Let (X, T ) be a Zd -actions TDS with metric ρ. For ε > 0 and M ∈ N, we define

PX(ε, M) = {α ∈ PX : diam(α) < ε and Card(α) ≤ M}, (2.1)

and PX(ε) = ⋃
M∈N,PX(ε,M)	=∅ PX(ε, M), where diam(α) := max{diam(A) : A ∈ α}.

The following lemma is a slight variant of [16, Lemma 2.3], we omit the proof.

LEMMA 2.1. Let (X, T ) be a Zd -actions TDS and ε > 0. Then the following hold.
(1) If M ∈ N satisfies PX(ε, M) 	= ∅, then the map

θ ∈ M(X) �→ Hθ(ε, M; l) := inf
α∈PX(ε,M)

1
λl

Hθ

( ∨
g∈�l

T −gα

)
(2.2)

is upper semi-continuous from M(X) to [0, log M] for each l ∈ N.
(2) The map

θ ∈ M(X) �→ Hθ(ε; l) := inf
α∈PX(ε)

1
λl

Hθ

( ∨
g∈�l

T −gα

)

is a bounded upper semi-continuous non-negative function for each l ∈ N.
(3) The map

μ ∈ M(X, T ) �→ hμ(T , ε) := inf
α∈PX(ε)

hμ(T , α)

is a bounded upper semi-continuous non-negative function.

Remark 2.2. Since PX(ε) = ⋃
M∈N,PX(ε,M)	=∅ PX(ε, M), we have

Hθ(ε; l) = inf
M∈N,PX(ε,M)	=∅

Hθ(ε, M; l)
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for θ ∈ M(X) and

hμ(T , ε) = inf
α∈PX(ε)

hμ(T , α) = inf
α∈PX(ε)

inf
l≥1

1
λl

Hμ

( ∨
g∈�l

T −gα

)

= inf
l≥1

inf
α∈PX(ε)

1
λl

Hμ

( ∨
g∈�l

T −gα

)
= inf

l≥1
Hθ(ε; l)

for θ ∈ M(X, T ).

LEMMA 2.2. Let (X, T ) be a Zd -actions TDS and μ ∈ M(X). Let α ∈ PX with
Card(α) = M . For n, m ∈ N with n < m, denote

h(n) := H1/λn

∑
g∈�n

μ◦T −g(α) and h(n, m) := H1/(λm−λn)
∑

g∈�m
n

μ◦T −g(α),

then:
(i) h(n) ≤ log M and h(n, m) ≤ log M;

(ii) |h(n + 1) − h(n)| ≤ −(λn/λn+1) log(λn/λn+1) − ((λn+1 − λn)/λn+1)

log((λn+1 − λn)/λn+1) + 2((λn+1 − λn)/λn+1) log M;
(iii) |h(m) − (λn/λm)h(n) − ((λm − λn)/λm)h(n, m)| ≤ log 2.

Proof. (i) is obtained directly from [43, Corollary 4.2.1].
(ii) Given μ1, μ2 ∈ M(X) and p ∈ [0, 1], since the function φ(x) = x log(x) is

convex, if A ∈ α, then

0 ≥ φ(pμ1(A) + (1 − p)μ2(A)) − pφ(μ1(A)) − (1 − p)φ(μ2(A))

= (pμ1(A)+ (1−p)μ2(A)) log(pμ1(A)+ (1−p)μ2(A))−pμ1(A) log(μ1(A))

− (1 − p)μ2(A) log(μ2(A))

= pμ1(A)[log(pμ1(A) + (1 − p)μ2(A)) − log(pμ1(A))]

+ (1 − p)μ2(A)[log(pμ1(A) + (1 − p)μ2(A)) − log((1 − p)μ2(A))]

+ pμ1(A)[log(pμ1(A)) − log(μ1(A))]

+ (1 − p)μ2(A)[log((1 − p)μ2(A)) − log(μ2(A))]

≥ 0 + 0 + μ1(A)p log p + μ2(A)(1 − p) log(1 − p) because log is increasing.

In addition,

0 ≤ Hpμ1+(1−p)μ2(α) − pHμ1(α) − (1 − p)Hμ2(α)

≤ −p log p − (1 − p) log(1 − p) ≤ log 2. (2.3)

For n ∈ N, by (i) and equation (2.3), we have

|h(n + 1) − h(n)| =
∣∣∣∣h(n + 1) − λn

λn+1
h(n) − λn+1 − λn

λn+1
h(n, n + 1) − λn+1 − λn

λn+1
h(n)

+ λn+1 − λn

λn+1
h(n, n + 1)

∣∣∣∣
≤ − λn

λn+1
log

λn

λn+1
− λn+1 −λn

λn+1
log

λn+1 −λn

λn+1
+2

λn+1 −λn

λn+1
log M .
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(iii) Since �m = �n

⋃
�m

n , we have

1
λm

∑
g∈�m

μ ◦ T −g = λn

λm

(
1
λn

∑
g∈�n

μ ◦ T −g
)

+ λm − λn

λm

(
1

λm − λn

∑
g∈�m

n

μ ◦ T −g
)

for m, n ∈ N with n < m. Taking p = λn/λm, μ1 = (1/λn)
∑

g∈�n
μ ◦ T −g and μ2 =

(1/(λm − λn))
∑

g∈�m
n

μ ◦ T −g, then equation (2.3) implies (iii).

Remark 2.3. Combining (ii) with the fact λn/(λn+1) = (2n − 1)d/(2n + 1)d→1 as
n→∞ and 0 · log 0 = 0, we gain lim supn→∞ |h(n + 1) − h(n)| = 0.

LEMMA 2.3. Let (X, T ) be a Zd -actions TDS and μ ∈ M(X). For ε > 0 and l, M ∈ N,
let H•(ε, M; l) be defined as equation (2.2). Then the following statements hold.
(1) For all n ∈ N,∣∣∣∣H1/λn

∑
g∈�n

μ◦T −g(ε, M; l) − H1/λn+1
∑

g∈�n+1

μ◦T −g(ε, M; l)

∣∣∣∣
≤ − λn

λlλn+1
log

λn

λn+1
− λn+1 − λn

λlλn+1
log

λn+1 − λn

λn+1
+ 2

λn+1 − λn

λn+1
log M .

(2) For all n, m ∈ N with n < m,

λn

λm

H1/λn

∑
g∈�n

μ◦T −g(ε, M; l) + λm − λn

λm

H1/(λm−λn)
∑

g∈�m
n

μ◦T −g(ε, M; l)

≤ H1/λm

∑
g∈�m

μ◦T −g(ε, M; l) + log 2
λl

. (2.4)

Proof. The statements follow from the definition of H•(ε, M; l) as well as
Lemma 2.2.

3. Variational principle for weighted topological pressure
3.1. Some lemmas. In this section, we give some lemmas which play a significant role
in the proof of weighted variational principle. Recall that for x ∈ X1, n ∈ N, ε > 0, the
nth a-weighted Bowen ball of radius ε centred at x is defined by

Ba
n(x, ε) : = {y ∈ X1 : di(T

g
i τi−1x, T

g
i τi−1y) < ε for g ∈ �
(a1+···ai )n�, i = 1, . . . , k}

= {y ∈ X1 : di(τi−1T
g
1 x, τi−1T

g
1 y) < ε for g ∈ �
(a1+···ai )n�, i = 1, . . . , k}.

Let e1, . . . , ed be the canonical basis for Zd , then

T
g
1 = T

g1
1,1 ◦ · · · ◦ T

gd

1,d for all g = (g1, . . . , gd) ∈ Zd ,

where T1,j = T
ej

1 and T
gj

1,j denotes the gj -fold iteration of T1,j . Hence, if d = 1, then T
g
1

is the g1-fold iteration of the map T1. We have extended Feng and Huang’s definition of a
weighted Bowen ball in the Z+-action setting (see [16, Definition 1.2]). For the a-weighted
Bowen ball and weighted measure-theoretic entropy of T1, we can establish the following
theorem similar to the Brin–Katok theorem (see [6, 29]), which contributes to the lower
bound estimate of the weighted topological pressure P a(T1, f ).
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THEOREM 3.1. For each μ ∈ E(X1, T1), we have

lim
ε→0

lim inf
n→∞

− log μ(Ba
n(x, ε))

λn

= lim
ε→0

lim sup
n→∞

− log μ(Ba
n(x, ε))

λn

= ha
μ(T1)

for μ-a.e. x ∈ X1.

Remark 3.1. The above theorem extends some well-known results. When a =
(1, 0, . . . , 0) and d = 1, Theorem 3.1 reduces to the classical Brin–Katok theorem
on local entropy. When d = 1, Feng and Huang [16] established a weighted
version of the Brin–Katok theorem based on the weighted version of the classical
Schannon–McMilian–Breiman theorem, which is a special case of Theorem 3.1. For
the reader’s convenience, we give the proof of Theorem 3.1 in detail and postpone it to
Appendix A.

Inspired by Misiurewicz’s [31] elegant proof of the entropy variational principle, Yan
[44, Lemma 4.4] proved the following.

LEMMA 3.2. Let ν ∈ M(X) and α = {A1, . . . , AM} ∈ PX. Then for any n, l ∈ N with
n ≥ 2l, we have

1
λn

Hν

( ∨
g∈�n

T −gα

)
≤ 1

λl

Hνn

( ∨
g∈�l

T −gα

)
+ γl,n

λn

log M ,

where νn = (1/λn)
∑

g∈�n
ν ◦ T −g and γl,n := λn − λn−2l .

The following combinatoric lemma was obtained by Feng and Huang [16, Lemma 5.4],
as a slight variant of [21, Lemma 4.1] by Kenyon and Peres.

LEMMA 3.3. Let p ∈ N and uj : N→R (j = 1, . . . , p) be bounded functions with

lim
n→∞ |uj (n + 1) − uj (n)| = 0.

Then for any positive numbers c1, . . . , cp and r1, . . . , rp,

lim sup
n→∞

p∑
j=1

(uj (
cin�) − uj (
rjn�)) ≥ 0.

To give the upper bound estimate in Theorem 1.1, see equation (3.15) later, we show the
following lemma similar to a result due to Frostman.

LEMMA 3.4. Let f ∈ C(X1). Suppose that P a(T1, f ) > 0. Then for all 0 < s <

P a(T1, f ), there exist ν ∈ M(X1) and ε > 0, N ∈ N such that for any x ∈ X1 and
n ≥ N , we have

ν(Ba
n(x, ε)) ≤ sup

y∈Ba
n(x,ε)

exp
(

− sλn + 1
ad

1

∑
g∈�
a1n�

f (T
g
1 y)

)
.

Remark 3.2. The classical Frostman’s lemma [30] says that for any compact set E ⊂ X

with Hausdorff dimension greater than t, there exists μ ∈ M(X) with μ(E) = 1 so
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that μ(B(x, r)) < crt for some constant c > 0 and any r > 0, x ∈ X. Adapted from
Howroyd’s elegant argument, Feng and Huang obtained the corresponding non-weighted
version and weighted version of the dynamical Frostman lemma in [16], combining some
ideas in geometric measure theory. The main tool of the proof is the notion of an averaged
a-weighted topological pressure, which is similar to the weighted Hausdorff measure in
geometric measure theory. In our setting of a Zd -actions topological dynamical system,
we give the definition of averaged a-weighted topological pressure and the complete proof
of Lemma 3.4 in the next subsection.

Remark 3.3. We can see from Theorem 3.1 and Lemma 3.4 that the a-weighted Bowen
ball Ba

n(x, ε) constructs the bridge to relate weighted measure-theoretic entropy ha
μ(T1) to

weighted topological pressure P a(T1, f ).

3.2. Averaged a-weighted topological pressure and proof of Lemma 3.4. Let g be an
arbitrary real-valued function on X1, f ∈ C(X1), s ≥ 0, ε > 0, N ∈ N, and define

Wa,s
f ,N ,ε(g) = inf

∑
j

bj exp
(

− sλnj
+ 1

ad
1

sup
x∈Aj

∑
g∈�
a1nj �

f (T
g

1 x)

)
. (3.1)

Here the infimum is taken over all countable collections 	 = {(nj , Aj , bj )}j satisfying
nj ≥ N , Aj is Borel subset of Ba

nj
(x, ε) for some x ∈X1, 0<bj <∞ and

∑
j bjχAj

≥ g,
where χA denotes the characteristic function of A, that is, χA(x) = 1 if x ∈ A and
χA(x) = 0 if x ∈ X1 \ A. For Z ⊂ X1, set Wa,s

f ,N ,ε(Z) := Wa,s
f ,N ,ε(χZ). The quantity

Wa,s
f ,N ,ε(Z) does not decrease as N increases and ε decreases, and hence the following

limits exist:

Wa,s
f ,ε(Z) = lim

N→∞ Wa,s
f ,N ,ε(Z), Wa,s

f (Z) = lim
ε→0

Wa,s
f ,ε(Z).

There exists a critical value of the parameter s, which we will denote by P a
W(T1, f , Z),

where Wa,s
f (Z) jumps from ∞ to 0, that is,

Wa,s
f (Z) =

{
0, s > P a

W(T1, f , Z),

∞, s < P a
W(T1, f , Z).

In other words, P a
W(T1, f , Z) = inf{s : Wa,s

f (Z) = 0} = sup{s : Wa,s
f (Z) = ∞}.

Definition 3.1. We call P a
W(T1, f ) := P a

W(T1, f , X1) the average a-weighted topological
pressure of f with respect to T1.

Essentially, for any s ≥ 0, N ∈ N, ε > 0, f ∈ C(X1), both �
a,s
f ,N ,ε and Wa,s

f ,N ,ε are outer
measures on X1, as a direct consequence of their definitions. The next proposition reveals
that they are equivalent to a certain extent.

PROPOSITION 3.5. Let Z ⊂ X1. Then for any s ≥ 0 and ε, δ > 0, we have

�
a,s+δ
f ,N ,6ε(Z) ≤ Wa,s

f ,ε(Z) ≤ �
a,s
f ,N ,ε(Z)

when N ∈ N is large enough. Moreover, P a(T1, f ) = P a
W(T1, f ).

To prove Proposition 3.5, we need the following lemma, obtained in [16, Lemma 3.7].
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LEMMA 3.6. Let (X, d) be a compact metric space and ε > 0. Let (Ei)i∈I be a finite
or countable family of subsets of X with diam(Ei) ≤ ε, and (ci)i∈I a family of positive
numbers. Let t > 0. Assume that F ⊂ X is such that

F ⊂
{
x ∈ X :

∑
i∈I

ciχEi
(x) > t

}
.

Then F can be covered by no more than (1/t)
∑

i∈I ci balls with centres in
⋃

i∈I Ei and
radius 6ε.

LEMMA 3.7. Let ε > 0. Then there exists γ > 0 so that for any n ∈ N, X1 can be covered
by no more than exp(γλn) balls of radius ε in metric da

n .

Proof. For i = 1, . . . , k, since Xi is compact, there exists a finite open cover αi of Xi

with diam(αi) < ε (in metric da
n). Let n ∈ N. Denote

β =
k∨

i=1

( ∨
g∈�
(a1+···+ai )n�

T
−g
1 τ−1

i−1αi

)
.

Then β is an open cover of X1 with diam(β) < ε (in metric da
n). Hence, X1 can be covered

by at most Card β many balls of radius ε in metric da
n . Choose γ > 0 so that exp γ =∏k

i=1(Card αi)
(a1+···+ai+1)d . Then

Card β ≤
k∏

i=1

(Card αi)
λ
(a1+···+ai )n� ≤ exp(γλn),

which completes the proof.

Proof of Proposition 3.5. Let Z ⊂ X1, s ≥ 0, ε, δ > 0. If we take g = χZ and bj ≡ 1
in the definition of equation (3.1), then Wa,s

f ,ε(Z) ≤ �
a,s
f ,N ,ε(Z) for each N ∈ N. Next,

we show that �
a,s+δ
f ,N ,6ε(Z) ≤ Wa,s

f ,ε(Z) when N ∈ N is large enough. Given γ > 0 as in
Lemma 3.7, assume N ≥ 2 so that

n2(λn + 1) exp(γ − λnδ) ≤ 1 when n ≥ N . (3.2)

Let {(ni , Ai , bi)}i∈I be a family so that I ⊂ N, Ai ⊂ Ba
ni

(x, ε) for some x ∈ X1,
0 < bi < ∞, ni ≥ N and ∑

i∈I
biχAi

≥ χZ . (3.3)

So we only need to prove that

�
a,s+δ
f ,N ,6ε(Z) ≤

∑
i∈I

bi exp
(

− sλni
+ 1

ad
1

sup
x∈Ai

∑
g∈�
a1ni �

f (T
g

1 x)

)
, (3.4)

which implies �
a,s+δ
f ,N ,6ε(Z) ≤ Wa,s

f ,ε(Z). Denote In := {i ∈ I : ni = n},

gn(x) := 1
ad

1

∑
g∈�
a1n�

f (T
g

1 x), gn(E) := sup
x∈E

gn(x)
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for N ∈ N, x ∈ X1, E ⊂ X1 and

Zn,t :=
{
x ∈ Z :

∑
i∈In

biχAi
(x) > t

}
.

Now we claim that

�
a,s+δ
f ,N ,6ε(Zn,t ) ≤ 1

tn2

∑
i∈In

bi exp(−sλn + gn(Ai)) (3.5)

for all n ≥ N and 0 < t < 1.
To prove the claim, assume that n ≥ N and 0 < t < 1. Set D = (1/λn)gn(Zn,t ). For

� = 1, 2, . . . , λn and i ∈ In, let

Z�
n,t :=

{
x ∈ Zn,t :

1
λn

gn(x) ∈
(

D − γ �

λn

, D − γ (� − 1)

λn

]}
, Ai,� := Ai ∩ Z�

n,t

and

Z0
n,t :=

{
x ∈ Zn,t :

1
λn

gn(x) ≤ D − γ

}
, A0,� := A0 ∩ Z�

n,t .

For � = 0, 1, 2, . . . , λn, denote In,� := {i ∈ In : Ai,� 	= ∅}, then

Z�
n,t =

{
x ∈ X1 :

∑
i∈In,�

biχAi,� (x) > t

}
.

By Lemma 3.6, Z�
n,t can be covered by at most (1/t)

∑
i∈In,�

bi balls with centre in⋃
i∈In,�

Ai,� and radius 6ε in metric da
n . Then for � = 1, 2, . . . , λn,

�
a,s+δ
f ,N ,6ε(Z

�
n,t ) ≤ 1

t

∑
i∈In,�

bi exp(−(s + δ)λn + gn(Z
�
n,t ))

≤ 1
t

exp(−(s + δ)λn))e
γ

∑
i∈In,�

bi exp(gn(Ai,�))

≤ eγ−λnδ 1
t

∑
i∈In

bi exp(−λns + gn(Ai)). (3.6)

In addition, by Lemma 3.7, Z0
n,t can be covered by at most exp(λnδ) balls of radius 6ε

in metric da
n . Note that gn(Zn,t ) = λnD. For any u < λnD, there exists x ∈ Zn,t so that

u ≤ gn(x). For another thing, since x ∈ Zn,t , we have
∑

i∈In
biχAi

(x) ≥ t , and therefore

1
t

∑
i∈In

bign(Ai) ≥ 1
t

∑
i∈In,x∈Ai

bign(Ai) ≥ 1
t

∑
i∈In,x∈Ai

biu ≥ u. (3.7)

Thus, by equation (3.7),

�
a,s+δ
f ,N ,6ε(Z

0
n,t ) ≤ exp(λnγ ) exp(−λn(s + δ) + gn(Z

0
n,t ))

≤ exp[λnγ − λn(s + δ) + λn(D − γ )]

≤ e−λnδ 1
t

∑
i∈In

bi exp(−λns + gn(Ai)). (3.8)
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Combining equations (3.2), (3.6) and (3.8), we have

�
a,s+δ
f ,N ,6ε(Zn,t ) ≤

λn∑
�=0

�
a,s+δ
f ,N ,6ε(Z

�
n,t ) ≤ (λn + 1)eγ−λnδ 1

t

∑
i∈In

bi exp(−λns + gn(Ai))

≤ 1
n2t

∑
i∈In

bi exp(−λns + gn(Ai)), (3.9)

which finishes the proof of the claim in advance. It is clear that
∑∞

n=N(1/n2) ≤∑∞
n=2(1/n2) ≤ 1. Hence, if x /∈ ⋃

n≥N Zn,t/n2 , then

∑
i∈I

biχAi
(x) =

∑
i∈

∞⋃
n=N

In

biχAi
(x) ≤

∞∑
n=N

∑
i∈In

biχAi
(x) ≤

∞∑
n=N

t

n2 ≤ t < 1,

thus x /∈ Z by equation (3.3). We can infer that Z ⊂ ⋃
n≥N Zn,t/n2 . By equation (3.9),

�
a,s+δ
f ,N ,6ε(Z) ≤

∞∑
n=N

�
a,s+δ
f ,N ,6ε(Zn,t/n2) ≤ 1

t

∞∑
n=N

∑
i∈In

bi exp(−λns + gn(Ai))

≤ 1
t

∑
i∈I

bi exp(−λns + gn(Ai)).

Letting t ↗ 1, we have �
a,s+δ
f ,N ,6ε(Z) ≤ ∑

i∈I bi exp(−λns + gn(Ai)), which implies that
equation (3.4) holds.

LEMMA 3.8. Let s ≥ 0, N ∈ N, ε > 0. Assume that c := Wa,s
f ,N ,ε(X1) > 0. Then there

exists μ ∈ M(X1) so that

μ(Ba
n(x, ε)) ≤ 1

c
exp(−sλn + gn(B

a
n(x, ε))),

where

gn(z) := 1
ad

1

∑
g∈�
a1n�

f (T
g
1 z), gn(E) := sup

z∈E

gn(z)

for z ∈ X1, E ⊂ X1.

Proof. Obviously, c < ∞. Define a functional p : C(X1)→R by

p(g) := 1
c
Wa,s

f ,N ,ε(g), g ∈ C(X1).

Let 1 ∈ C(X1) denote the constant function 1(x) ≡ 1. One can verify that:
(1) p(g + h) ≤ p(g) + p(h) for all g, h ∈ C(X1);
(2) p(tg) = tp(g) for all t ≥ 0 and g ∈ C(X1);
(3) p(1) = 1, 0 ≤ p(g) ≤ ‖g‖ for all g ∈ C(X1) and p(g) = 0 if g ∈ C(X1) with

g ≤ 0.

https://doi.org/10.1017/etds.2022.67 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.67


A variational principle for weighted topological pressure under Zd -actions 3325

By the Hahn–Banach theorem, we can extend the linear functional t �→ tp(1), t ∈ R,
from the subspace of the constant functions to a linear functional L : C(X1)→R satisfying

L(1) = p(1) = 1 and − p(−g) ≤ L(g) ≤ p(g) for all g ∈ C(X1).

If g ∈ C(X1) with g ≥ 0, then p(−g) = 0 and therefore L(g) ≥ 0. Furthermore,
L(1) = 1. By the Riesz representation theorem [43, Theorem 6.3], there exists
μ ∈ M(X1) so that L(g) = ∫

X1
gdμ for all g ∈ C(X1). Let x ∈ X1, n ≥ N and

K ⊂ Ba
n(x, ε) be compact. Then there exists an open set V with K ⊂ V ⊂ Ba

n(x, ε)

so that gn(V ) ≤ gn(K) + δ. By the Uryson lemma, there exists g ∈ C(X1) such that
0 ≤ g ≤ 1, g(z) = 1 for z ∈ K and g(z) = 0 for z ∈ X1 \ V . Then μ(K) ≤ L(g) ≤ p(g).
Since g ≤ χV , n ≥ N , by the definition of Wa,s

f ,N ,ε(g) in equation (3.1), we have
Wa,s

f ,N ,ε(g) ≤ exp(−sλn + gn(V )). Therefore, p(g) ≤ (1/c) exp(−sλn + gn(V )) and

μ(K) ≤ 1
c

exp(−sλn + gn(V )) ≤ 1
c

exp(−sλn + gn(K) + δ).

Letting δ→0, we conclude that μ(K) ≤ (1/c) exp(−sλn + gn(K)). Finally, since μ is
regular, for the arbitrariness of K ⊂ Ba

n(x, ε), we have

μ(Ba
n(x, ε)) ≤ 1

c
exp(−sλn + gn(B

a
n(x, ε))).

Proposition 3.5 and Lemma 3.8 together imply Lemma 3.4.

3.3. Proof of Theorem 1.1

Part (i): lower bound. First, we prove that

P a(T1, f ) ≥ sup
{
ha

μ(T1) +
∫
X1

f dμ : μ ∈ M(X1, T1)

}
.

Recall that for each μ ∈ M(X1, T1), there is a unique measure τ on Borel subsets of
M(X1, T1) such that τ(E(X1, T1)) = 1 and for all f ∈ C(X1),∫

X1

f (x) dμ(x) =
∫

E(X1,T1)

( ∫
X1

f (x) dm(x)

)
dτ(m).

We write μ = ∫
E(X1,T1)

mdτ(m) and call this the ergodic decomposition (see [13]) of μ.
For μ ∈ E(X1, T1), via Birkhoff’s ergodic theorem improved by Ornstein and Weiss [34],
we have

lim
n→∞

∑
g∈�n

f (T
g

1 x)

λn

=
∫

X1

f dμ (3.10)

for μ-a.e. x ∈ X1. By Jacob’s theorem [43, Theorem 8.4], if μ = ∫
E(X1,T1)

mdτ(m) is the
ergodic decomposition for μ ∈ M(X1, T1), we have

ha
μ(T1) =

∫
E(X1,T1)

ha
m(T1) dτ(m). (3.11)
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So we only need to prove that

P a(T1, f ) ≥
∫

X1

f dμ + min{δ−1, ha
μ(T1) − δ} − δ (3.12)

for each δ > 0 and μ ∈ E(X1, T1). Denote H := min{δ−1, ha
μ(T1) − δ}. By Theorem 3.1,

choose ε > 0 such that

lim inf
n→∞

− log μ(Ba
n(x, ε))

λn

> H for μ − a.e. x ∈ X1. (3.13)

Considering equations (3.10), (3.13) and using the Egorov theorem, there exist N ∈ N and
a Borel set EN ⊂ X1 with μ(EN) ≥ 1

2 such that for any x ∈ EN and n ≥ N ,

μ(Ba
n(x, ε)) < exp(−λnH),

∑
g∈�
a1n�

f (T
g

1 x) ≥ λ
a1n�
( ∫

X1

f dμ − δ

)
. (3.14)

Choose a countable set 	 = {(nj , Aj)}j such that nj ≥ N ,
⋃

j Aj = X1 and there exists
xj ∈ X1 satisfying Aj ⊂ Ba

nj
(xj , ε/2) for each j. Denote by I := {j : Aj ∩ EN 	= ∅}. For

each j, taking yj ∈ Aj ∩ EN , then Aj ⊂ Ba
nj

(xj , ε
2 ) ⊂ Ba

nj
(yj , ε). Therefore, by equation

(3.14), we have

μ(Aj ) ≤ μ(Ba
nj

(yj , ε)) < exp(−λnj
H)

and
1
ad

1
sup
x∈Aj

∑
g∈�
a1nj �

f (T
g

1 x) ≥ 1
ad

1

∑
g∈�
a1nj �

f (T
g
1 yj )

≥ λ
a1nj �
ad

1

( ∫
X1

f dμ − δ

)
≥ λnj

( ∫
X1

f dμ − δ

)
.

If we choose s = ∫
X1

f dμ + H − δ, then for all j ∈ I,

exp
(

− sλnj
+ 1

ad
1

sup
x∈Aj

∑
g∈�
a1nj �

f (T
g

1 x)

)

≥ exp
(

− λnj

( ∫
X1

f dμ + H − δ

)
+ λnj

( ∫
X1

f dμ − δ

))
= exp(−λnj

H) ≥ μ(Aj ).

Summing over j ∈ I, we obtain that
∑
j∈I

exp
(
− sλnj

+ 1
ad

1
sup
x∈Aj

∑
g∈�
a1nj �

f (T
g
1 x)

)
≥

∑
j∈I

μ(Aj )≥μ

( ⋃
j∈I

Aj

)
≥μ(EN)≥ 1

2
.

Then �
a,s
f (X1) ≥ �

a,s
f ,ε(X1) ≥ �

a,s
f ,N ,ε(X1) ≥ 1

2 > 0 and therefore

P a(T1, f ) ≥ s =
∫

X1

f dμ + min{δ−1, ha
μ(T1) − δ} − δ.

Thus, equation (3.12) holds as desired.

https://doi.org/10.1017/etds.2022.67 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.67


A variational principle for weighted topological pressure under Zd -actions 3327

Part (ii): upper bound. In this section, we will prove that for any f ∈ C(X1) and δ > 0,
there exists μ ∈ M(X1, T1) such that

P a(T1, f ) ≤ ha
μ(T1) +

∫
X1

f dμ + δ.

Suppose that P a(T1, f ) > 0. Take 0 < s < s′ < P a(T1, f ). Denote by Snf (x) :=∑
g∈�n

f (T
g
1 y). Take ε0 > 0 such that for x, y ∈ X1: if d1(x, y) ≤ ε0, then |f (x) −

f (y)| < (s′ − s)ad
1 /(
a1� + 1)d . By Lemma 3.4, there exist ν ∈ M(X1, T1), ε ∈ (0, ε0)

and N ∈ N such that

ν(Ba
n(x, ε)) ≤ sup

y∈Ba
n(x,ε)

exp
(

− s′λn + 1
ad

1
S
a1n�f (y)

)

≤ exp
(

− sλn + 1
ad

1
S
a1n�f (x)

)
(3.15)

for any n ≥ N and x ∈ X1. Additionally, there exists τ ∈ (0, ε) such that for any 1 ≤ i ≤
j ≤ k: if xi , yi ∈ Xi with di(xi , yi) < τ , then

dj (πj−1 ◦ · · · ◦ πi(xi), πj−1 ◦ · · · ◦ πi(yi)) < ε.

Take M0 ∈ N with PXi
(τ , M0) 	= ∅ for i = 1, . . . , k. Let M ∈ N with M ≥ M0 and αi ∈

PXi
(τ , M) for i = 1, . . . , k. Denote βi = τ−1

i−1αi and

�1(n) = �
a1n�, �i(n) = �

(a1+···+ai )n�

(a1+···+ai−1)n�

for n ∈ N and i = 2, . . . , k. Then for any n ≥ N and x ∈ X1, we have

k∨
i=1

∨
g∈�i(n)

T
−g
1 βi(x) ⊆ Ba

n(x, ε). (3.16)

Here βi(x) represents the element in β containing x. Combining equations (3.15) and
(3.16), we conclude that for any x ∈ X1,

ν

( k∨
i=1

∨
g∈�i(n)

T
−g
1 βi(x)

)
≤ exp

(
− sλn + 1

ad
1
S
a1n�f (x)

)
, (3.17)

which implies that

Hν

( k∨
i=1

∨
g∈�i(n)

T
−g
1 βi

)
= −

∫
log ν

( k∨
i=1

∨
g∈�i(n)

T
−g
1 βi(x)

)
dν(x)

≥ sλn − 1
ad

1

∫
S
a1n�f (x) dν(x).

Thus,

k∑
i=1

Hν

( ∨
g∈�i(n)

T
−g
1 βi

)
≥ sλn − 1

ad
1

∫
S
a1n�f (x) dν(x). (3.18)
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Denote by t0(n) = 0, ti (n) = 
(a1 + · · · + ai)n� for n ∈ N and i = 1, . . . , k. Fix l ∈ N.
By Lemma 3.2, for sufficiently large n, the left-hand side of equation (3.18) is bounded
from above by

k∑
i=1

λti (n) − λti−1(n)

λl

Hwi,n

( ∨
g∈�l

T
−g
1 βi

)
+ (λtk(n) − λtk(n)−2l)logM ,

where

wi,n :=
∑

g∈�i(n) ν ◦ T
−g
1

λti (n) − λti−1(n)

.

Notice that∫
S
a1n�f (x) dν(x) =

∫ ∑
g∈�
a1n�

f (T
g

1 x) dν(x)=
∫ ∑

g∈�
a1n�
f dν ◦ T

−g
1 = λt1(n)

∫
f dw1,n,

then by equation (3.18) and the definition of H•(τ , M; l), we have

k∑
i=1

(λti (n) − λti−1(n))Hwi,n◦τ−1
i−1

(τ , M; l)

≥ sλn − λ
a1n�
ad

1

∫
f dw1,n − (λtk(n) − λtk(n)−2l)logM . (3.19)

Define νm = (
∑

g∈�m
ν ◦ T

−g
1 )/λm for m ∈ N. Since πi ◦ T

g
i = T

g
i+1 ◦ πi holds for all

1 ≤ i ≤ k − 1 and g ∈ Zd , we have τi−1 ◦ T
g
1 = T

g
i ◦ τi−1. Thus, for i = 1, . . . , k, we

obtain that

νm ◦ τ−1
i−1 =

∑
g∈�m

ν ◦ τ−1
i−1 ◦ T

−g
i

λm

, wi,n ◦ τ−1
i−1 =

∑
g∈�i(n) ν ◦ τ−1

i−1 ◦ T
−g
i

λti (n) − λti−1(n)

and therefore

νti (n) ◦ τ−1
i−1 = λti−1(n)

λti (n)

νti−1(n) ◦ τ−1
i−1 + λti (n) − λti−1(n)

λti (n)

wi,n ◦ τ−1
i−1. (3.20)

Here we recall that t0(n) = 0 and ti (n) = 
(a1 + · · · + ai)n� for n ∈ N.
To apply Lemma 2.3, we replace the terms T , μ, n, m by Ti , ν ◦ τ−1

i−1, ti−1(n), ti (n),
respectively, and obtain

λti−1(n)

λti (n)

H
νti−1(n)◦τ−1

i−1
(τ , M; l) + λti (n) − λti−1(n)

λti (n)

H
wi,n◦τ−1

i−1
(τ , M; l)

≤ H
νti (n)◦τ−1

i−1
(τ , M; l) + log 2

λl

,

and

λti (n)Hνti (n)◦τ−1
i−1

(τ , M; l) − λti−1(n)Hνti−1(n)◦τ−1
i−1

(τ , M; l)

≥ (λti (n) − λti−1(n))Hwi,n◦τ−1
i−1

(τ , M; l) − λti (n) log 2
λl

.
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Summing this over i from 1 to k and considering equation (3.19), we conclude that

�n : =
k∑

i=1

(λti (n)Hνti (n)◦τ−1
i−1

(τ , M; l) − λti−1(n)Hνti−1(n)◦τ−1
i−1

(τ , M; l))

≥ sλn − λ
a1n�
ad

1

∫
f dw1,n − (λtk(n) − λtk(n)−2l)logM − kλtk(n) log 2

λl

. (3.21)

Let ϒi(n) := H
νn◦τ−1

i−1
(τ , M; l). By Lemma 2.3(1),

|ϒi(n)−ϒi(n+1)|≤− λn

λlλn+1
log

λn

λn+1
− λn+1 −λn

λlλn+1
log

λn+1 −λn

λn+1
+2

λn+1 −λn

λn+1
logM .

(3.22)

Let

�(n) : =
k∑

i=2

λti (n)(ϒi(ti(n)) − ϒi(t1(n))) −
k∑

i=2

λti−1(n)(ϒi(ti−1(n)) − ϒi(t1(n)))

= �n −
k∑

i=1

(λti (n) − λti−1(n))ϒi(t1(n)).

By equation (3.21), we have

k∑
i=1

λti (n) − λti−1(n)

λn

ϒi(t1(n)) + λ
a1n�
ad

1 λn

∫
f dw1,n

≥ −�(n)

λn

+ s − λtk(n) − λtk(n)−2l

λn

logM + k log 2
λl

· λtk(n)

λn

. (3.23)

Next we claim that lim supn→∞(−�(n)/λn) ≥ 0. Define

�(n) : =
k∑

i=2

(a1 + · · · + ai−1)
d(ϒi(ti−1(n)) − ϒi(t1(n)))

−
k∑

i=2

(a1 + · · · + ai)
d(ϒi(ti(n)) − ϒi(t1(n))).

Then lim supn→∞(−�(n)/λn) = lim supn→∞ �(n). To apply Lemma 3.3, in which we
take p = 2k − 2, let

uj (n) =
{

(a1 + · · · + aj )
dϒj+1(n) if 1 ≤ j ≤ k − 1,

−(a1 + · · · + aj−k+2)
dϒj−k+2(n) if k ≤ j ≤ 2k − 2,

and

cj (n) =
{

a1 + · · · + aj if 1 ≤ j ≤ k − 1,

a1 + · · · + aj−k+2 if k ≤ j ≤ 2k − 2,

and rj = a1 for all 1 ≤ j ≤ 2k−2. Hence, by equation (3.22), we have limn→∞
|uj (n + 1) − uj (n)| = 0. Thus, lim supn→∞(−�(n)/λn) = lim supn→∞ �(n) ≥ 0.
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Letting n → ∞ and taking the upper limit in equation (3.23), we have

lim sup
n→∞

( k∑
i=1

[(a1 + · · · + ai)
d − (a1 + · · · + ai−1)

d ]ϒi(t1(n)) +
∫

f dνt1(n)

)

≥ s − k(a1 + · · · + ak)
d log 2

λl

. (3.24)

Write for brevity that κ = (k(a1 + · · · + ak)
d log 2)/λl . Since

ci = (a1 + · · · + ai)
d − (a1 + · · · + ai−1)

d

for i = 1, . . . , k, then equation (3.24) can be rewritten as

lim sup
n→∞

( k∑
i=1

ciϒi(t1(n)) +
∫

f dνt1(n)

)
≥ s − κ . (3.25)

Since M(X1, T1) is compact, we can choose a subsequence {nj } such that the left-hand
side of equation (3.25) equals

lim
j→∞

( k∑
i=1

ciHνt1(nj )◦τ−1
i−1

(τ , M; l) +
∫

f dνt1(nj )

)
≥ s − κ

and {νt1(nj )} converges in M(X1, T1) for some ϑ ∈ M(X1, T1). Since H•(τ , M; l) is
upper semi-continuous by Lemma 2.1, we conclude that

lim
j→∞

k∑
i=1

ciHϑ◦τ−1
i−1

(τ , M; l) +
∫

f dϑ ≥ s − κ . (3.26)

Define

� :=
{
(M , l, δ) : M , l ∈ N, δ > 0 with M ≥ M0, λl ≥ k(a1 + · · · + ak)

d log 2
δ

}

and

�M ,l,δ :=
{
η ∈ M(X1, T1) : H a

η (τ , M; l) +
∫

f dη ≥ s − δ

}
,

where H a
η (τ , M; l) := ∑k

i=1 ciHη◦τ−1
i−1

(τ , M; l). Then �M ,l,δ 	= ∅ since equation (3.26)

holds whenever (M , l, δ) ∈ �. Moreover, the mapping η ∈ M(X1, T1) �→ H a
η (τ , M; l) +∫

f dη is upper semi-continuous since the sum of finitely many upper semi-continuous
functions is still upper semi-continuous. By Definition 2.1(C2), �M ,l,δ is a non-empty
closed subset of M(X1, T1). Additionally,

�M1,l1,δ1 ∩ �M2,l2,δ2 ⊇ �M1+M2,l1l2,min{δ1,δ2}

for any (M1, l1, δ1), (M2, l2, δ2) ∈ �. Hence,
⋂

(M ,l,δ)∈� �M ,l,δ 	= ∅ for the finite
intersection property characterization of compactness, that is, there exists a μs ∈⋂

(M ,l,δ)∈� �M ,l,δ . That is to say,

H a
μs

(τ , M; l) +
∫

f dμs ≥ s − δ.
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Therefore,

k∑
i=1

ciHμs◦τ−1
i−1

(τ ; l) +
∫

f dμs = inf
M∈N,M≥M0

H a
μs

(τ , M; l) +
∫

f dμs ≥ s − δ.

Fix δ > 0, since λl ≥ (k(a1 + · · · + ak)
d log 2)/δ when l ∈ N is large enough, we have

k∑
i=1

cihμs◦τ−1
i−1

(T1, τ) +
∫

f dμs = inf
l∈N

k∑
i=1

ciHμs◦τ−1
i−1

(τ ; l) +
∫

f dμs

= lim
l→∞

k∑
i=1

ciHμs◦τ−1
i−1

(τ ; l) +
∫

f dμs ≥ s − δ.

Notice that the mapping θ ∈ M(X1, T1) �→ ∑k
i=1 cihθ (T1, τ) is upper semi-continuous,

there exists μ ∈ M(X1, T1) satisfying
∑k

i=1 cihμ(T1, τ) + ∫
f dμ ≥ s − δ. Further-

more, hμ(T1) ≥ hμ(T1, τ). Then ha
μ(T1) + ∫

f dμ ≥ s − δ. Letting s ↗ P a(T1, f ), for
the arbitrariness of δ > 0, we conclude that P a(T1, f ) ≤ ha

μ(T1) + ∫
X1

f dμ.

4. Pressure determines measure-theoretic entropy
In this section, based on the weighted variation principle in Theorem 1.1, we investigate
how the pressure P a(T1, f ) determines the weighted measure-theoretic entropy ha

μ(T1).
We need the following lemma in [12].

LEMMA 4.1. If K1, K2 are disjoint closed convex subsets of a locally convex linear
topological space V and if K1 is compact, then there exists a continuous real-valued linear
functional F on V such that F(x) < F(y) for all x ∈ K1, y ∈ K2.

THEOREM 4.2. Let μ0 ∈ M(X1, T1). Assume that ha
top(T1) < ∞ and the entropy map

θ ∈ M(Xi , Ti ) �→ hθ (Ti ), i = 1, . . . , k are upper semi-continuous at μ0. Then

ha
μ0

(T1) = inf
{
P a(T1, f ) −

∫
X1

f dμ0|f ∈ C(X1)

}
.

Proof. By the variational principle in Theorem 1.1, we have

ha
μ0

(T1) ≤ inf
{
P a(T1, f ) −

∫
X1

f dμ0|f ∈ C(X1)

}
.

To prove the opposite inequality, fix b > ha
μ0

(T1) and let

C := {(μ, t) ∈ M(X1, T1) × R|0 ≤ t ≤ ha
μ(T1)}.

Now we prove that C is a convex set. Given (μ1, t1), (μ2, t2) ∈ C, that is to say
0 ≤ t1 ≤ ha

μ1
(T1) and 0 ≤ t2 ≤ ha

μ2
(T1), for p ∈ [0, 1], since the entropy function

μ ∈ M(X1, T1) �→ ha
μ(T1) is affine, we have ha

pμ1+(1−p)μ2
(T1) = pha

μ1
(T1) +

(1 − p)ha
μ2

(T1) ≥ pt1 + (1 − p)t2 ≥ 0. Then p(μ1, t1) + (1 − p)(μ2, t2) ∈ C. Thus C
is a convex set. Additionally, let C(X1)

∗ be the dual space of C(X1) endowed with the
weak* topology and consider C as a subset of C(X1)

∗ × R. Under the assumption of the
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lemma, the mapping μ ∈ M(X1, T1) �→ ha
μ(T1) is upper semi-continuous at μ0, then

(μ0, b) /∈ C. To apply Lemma 4.1, let V = C(X1)
∗ × R, K1 = C, K2 = (μ0, b), then

there exists a continuous linear functional F : C(X1)
∗ × R→R such that

F((μ, t)) ≤ F((μ0, b)) for all (μ, t) ∈ C.

Since we are using the weak* topology on C(X1)
∗, F must have the form F((μ, t)) =∫

X1
f dμ + dt for some f ∈ C(X1) and d ∈ R. It follows that

∫
X1

f dμ + dt ≤∫
X1

f dμ0 + db for all (μ, t) ∈ C. In particular,
∫
X1

f dμ + dha
μ(T1) ≤ ∫

X1
f dμ0 + db

for all μ ∈ M(X1, T1). Taking μ = μ0, since b > ha
μ0

(T1), we have d > 0. Hence,

ha
μ(T1) +

∫
X1

f

d
dμ < b +

∫
X1

f

d
dμ0, for all μ ∈ M(X1, T1).

By Theorem 1.1, we have P a(T1, f/d) ≤ b + ∫
X1

f/d dμ0. Then

b ≥ P a
(
T1,

f

d

)
−

∫
X1

f

d
dμ0 ≥ inf

{
P a(T1, g) −

∫
X1

g dμ0|g ∈ C(X1)

}
.

Letting b ↘ ha
μ0

(T1), we conclude that ha
μ0

(T1) ≥ inf{P a(T1, f ) − ∫
X1

f dμ0|f ∈
C(X1)}.

5. Final remarks
As emphasized in the introduction, owing to the research of Ornstein and Weiss [34]
and Lindenstrauss [28], we can extend Feng and Huang’s weighted variational principle
for topological pressure (see [16, Theorem 1.4]) from TDS (X, T ) to Zd -actions TDS.
In other words, [28, 34] generalized classical pointwise convergence results to general
amenable discrete groups, and therefore contributed to obtain Birkhoff’s ergodic theorem
and the Schannon–McMillan–Breiman theorem for discrete amenable groups. In this
paper, we only consider the Zd -action, which is a special case of amenable group actions.
Additionally, we believe that the weighted variational principle obtained (see Theorem 1.1)
is valid for pressure under general amenable group actions.

However, while considering a finitely generated free group or semigroup G on a compact
metric space X, [18] or [27, Example 5.3] shows that M(X, G), the invariant measure
space, can be empty. Consequently, the conclusion in Theorem 1.1 may fail in the free
group setting. Alternatively, we can only obtain a partial variational principle like [2, 8,
27]. We propose that this difficulty can be overcome by two different approaches. First,
Theorem 4.2 in this paper shows that the pressure P a(T1, f ) determines the weighted
measure-theoretic entropy ha

μ(T1). Combined with the explanation in [9], it might be
reasonable to define the weighted measure-theoretic entropy by weighted topological
pressure, rather than the traditional Kolmogrov–Sinai entropy. Second, Feng and Huang
[15] investigate whether there is certain variational relation between Bowen topological
entropy and measure-theoretic entropy for arbitrary non-invariant compact set or Borel
set in general. In this case, one does not expect to have such variational principle on the
invariant measure space. Following the Brin–Katok formula (see [6, 29]), they defined the
measure-theoretic lower entropy and upper entropy and obtained the desired variational
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principle. Later, [40, 45] extend Feng and Huang’s work to topological pressure. Inspired
by [15, 40, 45], to establish the variational principle for weighted topological pressure in
the free group setting, one can similarly define a weighted version of measure-theoretic
lower entropy and upper entropy by weighted Bowen balls. This will avoid the difficulty
that the invariant measure under free group actions may fail to exist. Since new ideas and
techniques must be considered, we leave the above meaningful work for further research.
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comments which helped to improve the manuscript. The authors are supported by National
Natural Science Foundation of China (No. 11771044, 12171039) and National Key Research
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A. Appendix. A weighted version of the Brin–Katok theorem
In this section, we give the proof of a weighted version of the Brin–Katok theorem. First,
we recall some notation. Let (X, T ) be a Zd -actions TDS. Set a = (a1, . . . , ak) ∈ Rk

satisfying a1 > 0 and ai ≥ 0 for i ≥ 2. Make the convention a0 = 0. Write for brevity
that ci = (a0 + · · · + ai)

d − (a0 + · · · + ai−1)
d for i = 1, . . . , k. Denote �i(n) =

�

(a0+···+ai )n�

(a0+···+ai−1)n�, t0(n) = 0, ti (n) = 
(a1 + · · · + ai)n� for n ∈ N and i = 1, . . . , k.

LEMMA A.1. ([17] Shannon–McMillan–Breiman) Let (X, B(X), μ, T ) be an ergodic
measure preserving dynamical system and α ∈ PX with Hμ(α) < ∞. Then

lim
n→∞

1
λn

Iμ

( ∨
g∈�n

T −gα

)
(x) = hμ(T , α)

for μ-a.e. x ∈ X, where Iμ(α)(x) := − ∑
A∈α χA(x) log μ(A) for α ∈ PX denotes the

information function.

As a consequence of Lemma A.1, we have the following lemma.

LEMMA A.2. Let μ ∈ E(X, T ). Let k ≥ 1 and α1, . . . , αk ∈ PX be k finite partitions
with Hμ(αi) < ∞ for each i. Then

lim
N→∞

Iμ(
∨k

i=1
∨

g∈�ti (N)
T −gαi)(x)

λN

=
k∑

i=1

cihμ

(
T ,

k∨
j=i

αj

)
(A.1)

for μ-a.e. x ∈ X. In particular, if α1 � α2 � · · · � αk , then

lim
N→∞

Iμ(
∨k

i=1
∨

g∈�i(N) T −gαi)(x)

λN

=
k∑

i=1

cihμ(T , αi) (A.2)

for μ-a.e. x ∈ X.
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Proof. Fix N ∈ N. Note that �ti(N) = �
ti(N)
ti−1(N) ∪ �ti−1(N) for i = 1, . . . , k and∨k

i=1
∨

g∈�ti (N)
T −gαi = ∨k

i=1
∨

g∈�
ti (N)

ti−1(N)

T −g(
∨k

k=i αj ). In addition, Iμ(α ∨ β) =
Iμ(α) + Iμ(β) for all α, β ∈ PX. Thus

Iμ(
∨k

i=1
∨

g∈�ti (N)
T −gαi)(x)

λN

=
Iμ(

∨k
i=1

∨
g∈�

ti (N)

ti−1(N)

T −g(
∨k

j=i αj ))(x)

λN

=
∑k

i=1 Iμ(
∨

g∈�
ti (N)

ti−1(N)

T −g(
∨k

j=i αj ))(x)

λN

=
∑k

i=1 Iμ(
∨

g∈�ti (N)
T −g(

∨k
j=i αj ))(x) − ∑k

i=1 Iμ(
∨

g∈�ti−1(N)
T −g(

∨k
j=i αj ))(x)

λN

,

and therefore by Lemma A.2,

lim
N→∞

Iμ(
∨k

i=1
∨

g∈�ti (N)
T −gαi)(x)

λN

=
k∑

i=1

(a0 + · · · + ai)
d lim

N→∞
Iμ(

∨
g∈�ti (N)

T −g(
∨k

j=i αj ))(x)

λti (N)

−
k∑

i=1

(a0 + · · · + ai−1)
d lim

N→∞
Iμ(

∨
g∈�ti−1(N)

T −g(
∨k

j=i αj ))(x)

λti−1(N)

=
k∑

i=1

(a0 + · · · + ai)
dhμ

(
T ,

k∨
j=i

αj

)
−

k∑
i=1

(a0 + · · · + ai−1)
dhμ

(
T ,

k∨
j=i

αj

)

=
k∑

i=1

cihμ

(
T ,

k∨
j=i

αj

)
.

Then equation (A.1) holds and equation (A.1) implies equation (A.2) obviously.

The following lemma is similar to [43, Theorem 8.3], we omit the proof.

LEMMA A.3. Let (X, T ) be a Zd -actions TDS. Let (αn)
∞
n=1 ⊂ PX such that diam(αn)→0

as → ∞. For every μ ∈ M(X, T ), hμ(T ) = limn→∞ hμ(T , αn).

Proof of Theorem 3.1. Let ε > 0, μ ∈ E(X1, T1) and αi ∈ PXi
(ε), i = 1, . . . , k. Given

n ∈ N and x ∈ X1, by Definition 1.1, we have

k∨
i=1

∨
g∈�i(n)

T
−g
1 τ−1

i−1αi(x) ⊆ Ba
n(x, ε).
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Hence, for μ-a.e. x ∈ X1,

lim sup
n→∞

− log μ(Ba
n(x, ε))

λn

≤ lim sup
n→∞

− log μ(
∨k

i=1
∨

g∈�i(n) T
−g
1 τ−1

i−1αi(x))

λn

= lim sup
n→∞

Iμ(
∨k

i=1
∨

g∈�i(n) T
−g
1 τ−1

i−1αi(x))

λn

=
k∑

i=1

cihμ

(
T1,

k∨
j=i

τ−1
j−1αj

)

=
k∑

i=1

cihμ

(
T1, τ−1

i−1

(
αi ∨

k∨
j=i+1

π−1
i ◦ · · · ◦ π−1

j−1αj

))

=
k∑

i=1

cihμ◦τ−1
i−1

(
Ti , αi ∨

k∨
j=i+1

π−1
i ◦ · · · ◦ π−1

j−1αj

)

≤
k∑

i=1

cihμ◦τ−1
i−1

(Ti ) = ha
μ(T1).

Next we show that for any δ > 0, there exist ε > 0 and a measurable set D ⊂ X1 so that
μ(D) > 1 − 3δ and

lim inf
n→∞

− log μ(Ba
n(x, ε))

λn

≥ min
{

1
δ

, ha
μ(T1) − δ

}
− [2 + 2(a1 + · · · + ak)

d ]δ

for each x ∈ D.
Fix δ > 0. By [43, Lemma 8.5 and Theorem 8.3], we can choose βi = {Bi

1, . . . , Bi
vi

} ∈
PXi

for i = 1, . . . , k, so that μ ◦ τ−1
i−1(∂βi) = 0 and diam(βi) are small enough and

h
μ◦τ−1

i−1
(Ti , βi) ≥

⎧⎪⎪⎨
⎪⎪⎩

1
c1δ

if h
μ◦τ−1

i−1
(Ti ) = ∞,

h
μ◦τ−1

i−1
(Ti ) − δ

c1 + · · · + ck

otherwise.

Define αi ∈ PXi
recursively for i = k, k − 1, . . . , 1 by setting αk = βk and

αj = βj ∨ π−1
j (αj+1) for j = k − 1, . . . , 1.

Then:
(1) αi � π−1

i (αi+1), that is, τ−1
i−1αi � τ−1

i αi+1 for i = 1, . . . , k − 1;
(2)

∑k
i=1 cihμ◦τ−1

i−1
(Ti , αi) ≥ min{1/δ, ha

μ(T1) − δ};
(3) μ ◦ τ−1

i−1(∂αi) = 0 for i = 1, . . . , k.
Write αi = {Ai

1, . . . , Ai
ui

} for i = 1, . . . , k. Let M = max1≤i≤k ui and � = {1, . . . , M}.
Given m ∈ N, for s = (si)

m−1
i=0 , t = (si)

m−1
i=0 ∈ �{0,...,m−1}, the Hamming distance between

s and t is defined by

Ham(s, t) := 1
m

Card{i ∈ {0, . . . , m − 1} : si 	= ti}.
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For s ∈ �{0,...,m−1} and 0 < τ ≤ 1, let Q(s, τ) be the total number of those t ∈ �{0,...,m−1}
satisfying Ham(s, t) ≤ τ . Then

Qm(τ) := max
s∈�{0,...,m−1}

Q(s, τ) ≤
(

m


mδ1�
)

M
mδ1�.

By the Stirling formula, there exists a small δ1 > 0 and a positive C := C(δ, M) > 0 so
that (

m


mδ1�
)

M
mδ1� ≤ eδm+C (A.3)

for all m ∈ N.
For η > 0, set

Ui
η(αi) := {x ∈ X1 : B(τi−1x, η) � αi(τi−1x)}, i = 1, . . . , k.

Then
⋂

η>0 Ui
η(αi) = τ−1

i−1(∂αi) and therefore μ(Ui
η(αi))→μ(τ−1

i−1(∂αi)) as η ↓ 0. We
can choose ε > 0 so that μ(Ui

η(αi)) < δ1 for any 0 < η ≤ ε and i = 1, . . . , k. Notice that∑k
i=1 ci = (a1 + · · · + ak)

d , by Birkhoff’s ergodic theorem, for μ-a.e. x ∈ X1, we have

lim
n→∞

1
λtk(n)

k∑
i=1

∑
g∈�i(n)

χUi
ε (αi )

(T
g

1 x) = 1
(a1 + · · · + ak)d

k∑
i=1

ciμ(Ui
ε(αi)) < δ1.

Thus, there exists �0 ∈ N large enough so that μ(A�) > 1 − δ for any � ≥ �0, where

A� :=
{
x ∈ X1 :

1
λtk(n)

k∑
i=1

∑
g∈�i(n)

χUi
ε (αi )

(T
g

1 x) ≤ δ1 for all n ≥ �

}
.

Since τ−1
0 α1 � τ−1

1 α2 � · · · � τ−1
k−1αk , by Lemma A.2, we have

lim
n→∞

− log μ(
∨k

i=1
∨

g∈�i(n) T
−g
1 τ−1

i−1αi(x))

λn

=
k∑

i=1

cihμ(T1, τ−1
i−1αi) =

k∑
i=1

cihμ◦τ−1
i−1

(Ti , αi)

for μ-a.e. x ∈ X1. Then there exists �1 ∈ N large enough so that μ(B�) > 1 − δ for any
� ≥ �1, where B� is the set of all points x ∈ X1 so that

− log μ(
∨k

i=1
∨

g∈�i(n) T
−g
1 τ−1

i−1αi(x))

λn

≥
k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) − δ (A.4)

for all n ≥ �. Fix � ≥ max{�0, �1}. Setting E = A� ∩ B�, then μ(E) ≥ 1 − 2δ. For x ∈ X1

and n ∈ N, the unique element

C(n, x) = (Cg(n, x))g∈�tk(n)

in �{0,1,...,λtk (n)−1} satisfying T
g
1 x ∈ τ−1

i−1(A
i
Cg(n,x)) for g ∈ �i(n), i = 1, . . . , k is called

the ({αi}ki=1, a; n)-name of x. Since each point in one atom A of
∨

g∈�i(n) T
−g

1 τ−1
i−1αi(x)
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has the same ({αi}ki=1, a; n)-name, we define

C(n, A) := C(n, x)

for any x ∈ A, which is called the ({αi}ki=1, a; n)-name of A.
If y ∈ Ba

n(x, ε), then for i = 1, . . . , k and g ∈ �i(n), either T
g
1 x and T

g
1 y belong to the

same element of τ−1
i−1αi or T

g
1 x ∈ Ui

ε(αi). Thus, if x ∈ E, n ≥ � and y ∈ Ba
n(x, ε), then

Ham(C(n, x), C(n, y)) ≤ δ1, that is, the Hamming distance between ({αi}ki=1, a; n)-name
of x and y does not exceed δ1. Moreover, Ba

n(x, ε) is contained in the set of points y
whose ({αi}ki=1, a; n)-name is δ1-close to ({αi}ki=1, a; n)-name of x. More precisely, for
x ∈ E, n ≥ �,

Ba
n(x, ε) ⊂ {y ∈ X1 : Ham(C(n, x), C(n, y)) ≤ δ1}

=
{
A ∈

k∨
i=1

( ∨
g∈�i(n)

T
−g

1 τ−1
i−1αi

)
: Ham(C(n, A), C(n, y)) ≤ δ1

}
=: �n(x).

(A.5)

In addition, by equation (A.3),

Card �n(x) ≤
(

λtk(n)


λtk(n)δ1�
)

M
λtk (n)δ1� ≤ eδλtk (n)+C . (A.6)

For n ∈ N, denote by En the sets of points x ∈ E so that there exists an element
A ∈ ∨k

i=1(
∨

g∈�i(n) T
−g

1 τ−1
i−1αi) with

μ(A) > exp
{(

−
k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) + [2 + (a1 + · · · + ak)
d ]δ

)
λn

}

and Ham(C(n, x), C(n, A)) ≤ δ1. Obviously, if x ∈ E \ En, for each A ∈ ∨k
i=1(

∨
g∈�i(n)

T
−g
1 τ−1

i−1αi) with Ham(C(n, x), C(n, A)) ≤ δ1, one has

μ(A) ≤ exp
{(

−
k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) + [2 + (a1 + · · · + ak)
d ]δ

)
λn

}
. (A.7)

In the following, we wish to estimate μ(En) for n ≥ �.
Let n ≥ �. Set

Fn :=
{
A ∈

k∨
i=1

( ∨
g∈�i(n)

T
−g
1 τ−1

i−1αi

)
: μ(A)

> exp
{(

−
k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) + [2 + (a1 + · · · + ak)
d ]δ

)
λn

}}
.

Since μ(X1) = 1, we have

Card Fn ≤ exp
{( k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) − [2 + (a1 + · · · + ak)
d ]δ

)
λn

}
.
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Additionally, by the definition of En, there exists A∈Fn with Ham(C(n, x), C(n, A)) ≤ δ1.
That is to say, the ({αi}ki=1, a; n)-name of A is δ1-close to the ({αi}ki=1, a; n)-name of

k∨
i=1

( ∨
g∈�i(n)

T
−g
1 τ−1

i−1αi

)
(x).

Denote by Gn the set of all elements B ∈ ∨k
i=1(

∨
g∈�i(n) T

−g
1 τ−1

i−1αi) satisfying

μ(B) ≤ exp
{( k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) − δ

)
λn

}

and Ham(C(n, B), C(n, A)) ≤ δ1 for some A ∈ Fn. Then

En ⊂ {B : B ∈ Gn}. (A.8)

Fix A ∈ Fn, the total number of B ∈ ∨k
i=1(

∨
g∈�i(n) T

−g
1 τ−1

i−1αi), whose ({αi}ki=1, a; n)-

name is δ1-close to the ({αi}ki=1, a; n)-name of A, is upper bounded by
( λtk (n)


λtk (n)δ1�
)

M
λtk (n)δ1� ≤ eδλtk (n)+C . Then

Card Gn ≤ eδλtk (n)+C Card Fn

≤ exp
{( k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) − [2 + (a1 + · · · + ak)
d ]δ

)
λn + δλtk(n) + C

}
.

In addition, combining equation (A.8) and the definition of Gn, we obtain

μ(En) ≤
{(

−
k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) + δ

)
λn

}
Card Gn

≤ exp
{

− δλn + C + [λtk(n) − (a1 + · · · + ak)
dλn]δ

}
.

Notice that limn→∞((λtk(n) − (a1 + · · · + ak)
dλn)/λn)=0. Thus, μ(En)≤e−δλn+C+o(λn)

when n is large enough. So we can choose �2 ≥ � such that
∑∞

n=�2
μ(En) < δ. Then

μ(
⋃

n≥�2
En) < δ. Setting D = E \ ⋃

n≥�2
En, we have μ(D) > 1 − 3δ. For x ∈ D and

n ≥ �2, since x ∈ En, combining equations (A.5), (A.6) and the definition of En, one has

μ(Ba
n(x, ε)) ≤ eδλtk (n)+C exp

{(
−

k∑
i=1

cihμ◦τ−1
i−1

(Ti , αi) + [2 + (a1 + · · · + ak)
d ]δ

)
λn

}
.

Thus, for x ∈ D,

lim inf
n→∞

− log μ(Ba
n(x, ε))

λn

≥
k∑

i=1

cihμ◦τ−1
i−1

(Ti , αi) − [2 + 2(a1 + · · · + ak)
d ]δ

≥ min
{

1
δ

, ha
μ(T1) − δ

}
− [2 + 2(a1 + · · · + ak)

d ]δ.
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