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Abstract
A novel couple-constrained parallel wrist with three measuring force flexible fingers is designed for grabbing heavy
objects and measuring grabbed forces. Its prototype is developed, its dynamics model is established, and its grabbing
forces are measured. First, using the extended formulas of the skew-symmetric matrix, the kinematic formulas are
derived for solving the Jacobian/Hessian matrices and the general velocity/acceleration of the moving links in the
couple-constrained parallel wrist. Second, a dynamics model is established for solving the dynamic actuation forces,
the couple-constrained forces, and the torque in the couple-constrained parallel wrist. Third, the theoretical solutions
of the kinematics/dynamics of the couple-constrained parallel wrist are verified using a simulation mechanism.
Finally, the grabbing forces of the three flexible fingers are measured and analyzed.

Nomenclature
R, P revolute, prismatic joints
U, S universal, spherical joints
DOF degree of freedom
mp, B moving platform and base of parallel wrist
o, O original points of mp, B
{m} coordinate system o-xyz of mp at o,
{B} coordinate system O-XYZ of B at O,
s(ζ ) skew-symmetric matrix of vector ζ

{ij} coordinate system attached on the jth finger
wj, yj

′ tip point, input velocity of the jth finger
Vwj output velocity of the jth finger at wj in {B}
Jwj Jacobian matrix of the jth finger
tjRj rotational matrix from {tj} to {B}
Vpr general input velocity of parallel wrist
Apr general input acceleration of parallel wrist
V r general input velocity of parallel wrist, finger
Ar input acceleration of parallel wrist, finger
V f general input velocity of fingers
J, H Jacobian, Hessian matrix of parallel wrist
gi moving link in ri(g=p, q, i=0, 1, 2, 3)
ωi, εi angular velocity acceleration of ri
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vgi, agi translational velocity acceleration of gi in ri

Vgi, Agi general (velocity, acceleration) of gi in ri

Jvgi translational Jacobian matrices of gi in ri

Jωgi rotational Jacobian matrices of gi in ri

Hvgi translational Hessian matrices of gi in ri

Hωgi rotational Hessian matrices of gi in ri

Jgi, Hgi general Jacobian, Hessian matrix of gi in ri

1. Introduction
It has been an interesting and challenging issue in the robot industry to design and develop various
industrial grippers and the finger mechanisms [1–4] to grab heavy objects and to measure grabbing
forces. Comparing with the serial mechanism, a parallel mechanism has several advantages, such as
the high rigidity, short kinematic chain, high kinematic precision, and large capability of load bearing
[5, 6]. Therefore, parallel mechanisms have been applied in the parallel machine tools, worktables, and
parallel legs [7, 8], and some three degrees of freedom (DOF) parallel mechanisms are synthesized [5, 6,
9]. Currently, some significant advances have been made in sophisticated biomimetic robotics systems
using parallel mechanisms and several dexterous multifingers [3, 4, 10]. In this aspect, Spencer et al.
presented the design and experimental results for a 16-finger highly underactuated microspine gripper for
application in the deep ocean [11]. Jin et al. designed a dexterous hand based on several parallel finger
structures [12]. Fang et al. synthesized some parallel dexterous hands with a parallel finger structure
based on Lie group [13]. He et al. designed a finger mechanism with a redundant serial-parallel hybrid
topology [14]. Zheng et al. proposed a 12-section cable-driven hyper redundant manipulator with a
puller follower controller [15]. Li et al. developed a two-finger dexterous bionic hand with six DOFs [16].
Isaksson et al. designed a 5-DOF redundant platform in order to transform the redundant platform motion
into the motion of a grasper [17]. Geng et al. presented a 3-DOF parallel micro-gripper and analyzed
its kinematics [18]. However, the existing grippers formed by cable-driven redundant manipulator may
have a less capability for grabbing the heavy object since a cable-driven finger has a lower load bearing
capability.

The gripper formed by the links, gears, and cams may have both quite complex structure and large
volume. In other hand, some existing 3-DOF parallel mechanisms may include some structure decou-
pling constraints which are sensitive to the manufacturing errors, so that their kinematic precision may
be decreased and their manufacturing becomes difficult [19]. The workspace of some existing 3-DOF
parallel mechanisms may be small, so that the dexterity of the gripper formed by them is reduced. Hence,
it has been a significant issue to develop a gripper using a 3-DOF parallel mechanism which is not sen-
sitive to the manufacturing errors and has a high rigidity and a large workspace in order to grab heavy
objects in large workspace and to measure grabbing force.

The main motivation of this paper is to develop a novel couple-constrained parallel wrist with three
measuring force flexible fingers in order to increase the rigidity, the kinematic precision, and the capa-
bility of grabbing heavy object, and to measure grabbing load and to reduce impact grabbing force when
the finger contacts with an object. The developed couple-constrained parallel wrist with three measuring
force flexible fingers has the following merits:

1. Its parallel wrist contains a planar couple-constrained actuation mechanism Pa and a SP (spher-
ical joint-prismatic joint) center passive constrained limb r0. Its kinematic precision and rigidity
are increased by Pa and r0. Using r0, the structure coupling constraints of the parallel wrist can
be transformed into the structure decoupling constraints which are not sensitive to the manufac-
turing errors [7]. Thus, both the kinematic precision and the rigidity of the parallel wrist can be
increased. In addition, the manufacturing of the parallel wrist becomes easy.
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2. The number of the links in the parallel wrist is reduced, and both the capability of load-bearing
and the workspace are increased by Pa since each of revolute joints in Pa has larger capability of
load-bearing and larger rotational angle than that of spherical or universal joint.

3. It can be used to grab heavy objects with various shapes. The contacting force between a fingertip
and the grabbed object can be solved by measuring the force of the finger sensor.

4. A large grabbed impact can be reduced greatly by a pre-pressured spring installed in each finger.

However, the kinematics/dynamics models of the developed couple-constrained parallel wrist with three
flexible finger have not been established; the grabbed forces have not been measured and the grabbing
performances have not been discovered and analyzed yet. For this reason, the kinematics/dynamics and
grabbing capability of the developed couple-constrained parallel wrist with three flexible finger are
studied in this paper. Several contributions are conducted as follows:

1. Develop a novel prototype of a couple-constrained parallel wrist with three flexible fingers.
2. Derive Jacobian and Hessian matrices of the moving links such as the moving platform, the

piston rods, the cylinder rods in four different limbs, and the connection rod in parallel wrist.
Establish the kinematics models for solving the general velocity and acceleration of the moving
links in order to establish dynamics model.

3. Establish a dynamics model for solving the dynamic actuation forces, the dynamic constrained
forces and torque of the developed gripper. Verify the theoretical solutions by its simulation
mechanism. Construct a workspace of the couple-constrained parallel wrist with three flexible
fingers.

2. Kinematics of couple-constrained parallel wrist with three measuring force flexible finger
2.1 Structure performance analysis of prototype
A prototype of the couple-constrained parallel wrist with three measuring force flexible finger is
developed in Yanshan University, see Fig. 1.

The kinematics model of the couple-constrained parallel wrist with the coordinate system and the
couple-constrained forces is shown in Fig. 2. Let (S, P, P, R, U) denote (the spherical, actuation pris-
matic, prismatic, revolute, and universal) joint. The couple-constrained parallel wrist includes a moving
platform mp, a fixed base B, a SPU (spherical joint - actuation prismatic joint - universal joint) actuation
limb r2 with a linear actuator, a SP-type center passive constrained rod r0, a planar couple-constrained
actuation mechanism Pa, and three flexible fingers installed with sensors and springs. Here, Pa is formed
by 2 RPRR (revolute joint - actuation prismatic joint - revolute joint - revolute joint) linear actuation
limbs ri (i = 1, 3), a connection rod L and mp. mp is a quaternary link with three connection points bi

(i = 1, 2, 3) and a central connection point o. L is a ternary link with 2 connection joints at Bi (i = 1, 3)
and a center connection point BL. B is a ternary link with two connection points (BL, B2) and a central
connection point O.

Each of ri (i = 1, 3) has a linear actuator. The lower ends of ri are connected with the two ends of L at
points Bi (i = 1, 3) by the revolute joints Ri (i = 1, 3). The upper end of ri is connected with mp at bi using
the universal joint Ui formed by two crossed revolute joints Ri1 and Ri2. r0 is formed by a piston rod rp0

and a cylinder rq0. rp0 is perpendicular to mp, and the upper end of rp0 is fixed onto mp at o. The lower
end of rp0 is coaxially connected with rq0 by p joint. The lower end of rq0 is connected with B at O by S
joint. L is connected with B at BL by a revolute joint RL. The upper end of r2 is connected with mp at b2

by U joint. The lower end of r2 is connected with B at B2 by S joint. bi (i = 1, 2, 3) are uniformly located
in the same circumference of mp. Bi (i = 1, 3) and B2 are located in the same circumference of B. Let
(||, ⊥, |) be the parallel constraint, perpendicular constraint, and collinear constraint, respectively. Let lv

be a line from b1 to b3. The geometric constraints {RL |L; L||X, Ri⊥L (i = 1, 3); R1||R3||R12||R32; Ri⊥ri;
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Figure 1. Prototype of couple-constrained parallel wrist with three flexible fingers (a) The open and
closed poses of three fingers (b), (c).

Figure 2. Kinematics model of couple-constrained parallel wrist.

R11|R31; R11⊥R12; R31⊥R32; x||lv; z⊥m; Z⊥B} are satisfied. In this case, R11 and R31 are always kept in the
same rotation. Based on a revised Grübler–Kutzbach equation [6], the DOF of the couple-constrained
parallel wrist is calculated as follows:

M = 6(n0 − n − 1) +
∑

Mi + ς − M0

= 6 × (10 − 12 − 1) + 18 + 3 = 3 (1)

The number of the links is n0 = 10 including one mp with the piston rod of r0, one cylinder of r0,
1 B, 1 L, 3 cylinders of ri (i = 1, 2, 3), and three piston rods of ri; the number of the kinematic pairs
is n = 12 including {R1, R3, RL, U1, U3, 2S, 1U, 4P}; the sum of local DoFs of the kinematic pairs is
�Mi = 18 since (R1, R3, RL, 4P) provide seven local DOFs, 2S provide six local DOFs, 1U provide two
local DOFs, and {U1, U3} provide three local DOFs because R11 and R31 are with the same rotation; the
redundant constraint is ς= 3 for Pa; and passive DOF is M0 = 0.

DOF of the flexible finger is calculated as 1 in ref. [20].
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2.2 Kinematics model of moving platform
The couple-constrained parallel wrist includes several moving links. Let {m} be a coordinate system
o-xyz fixed on mp at o, {B} be a coordinate system O-XYZ fixed on B at O. Let {ri, δi (i = 1, 2, 3)} be
the vector of the actuation limb ri and its unit vector, respectively, ei be the vector from o to bi, {mbi, bi

(i = 1, 2, 3)} be the vector position of connection point bi on mp in {m} and {B}, respectively. Let {Bi

(i = 1, 2, 3)} be the vector position of the connection point Bi on B in {B}, (o, Xo, Yo, Zo) be the vector
position of point o on mp in {B} and its three components. Let (xl, xm, xn, yl, ym, yn, zl, zm, zn) be the
nine orientation parameters of mp in {B}, (α, β, γ ) be three Euler angles. Let ei = e (i = 1, 2, 3) be the
distance from o to bi, Ei be the distance from O to Bi, ϕi be the angle between x and the line from o to bi,
L be the unit vector of L, lv be the unit vector of lv, ϕ be one of (α, β, γ , ϕi, θ6). Set sϕ = sinϕ, cϕ = cosϕ,
tϕ = tanϕ. Let B

mR be a rotation matrix from {m} to {B} in the order of XYX. {B
mR, mbi, bi, Bi(i = 1, 2, 3)}

are represented as follows:

B
mR =

⎛
⎝ xl = cβ yl = sβsγ zl = sβcγ

xm = sαsβ ym = cαcγ − sαcβsγ zm = −cαsγ − sαcβcγ

xn = −cαsβ yn = sαcγ + cαcβsγ zn = −sαsγ + cαcβcγ

⎞
⎠ (2a)

mbi =
⎛
⎝Xbi

Ybi

Zbi

⎞
⎠= ei

⎛
⎝ cϕi

sϕi

0

⎞
⎠, Bi =

⎛
⎝XBi

YBi

ZBi

⎞
⎠= Ei

⎛
⎝ cϕi

sϕi

0

⎞
⎠,

lv = x =
⎛
⎝ cβ

sαsβ

−cαsβ

⎞
⎠, L = X =

⎛
⎝1

0
0

⎞
⎠,

ϕ1 = 330◦,
ϕ2 = 90◦,
ϕ3 = 210◦

(2b)

o =
⎛
⎝Xo

Yo

Zo

⎞
⎠, bi = B

mR mbi + o =
⎛
⎝ eicϕixl + eisϕiyl + Xo

eicϕixm + eisϕiym + Yo

eicϕixn + eisϕiyn + Zo

⎞
⎠ (2c)

The formulas for solving the inverse displacement ri (i = 1, 2, 3) are derived from Eqs. (2a), (2b),
(2c) as follows:

(lvr1L) = 0 →
∣∣∣∣∣∣

xl xm xn

Xb1 − XB1 Yb1 − YB1 Zb1 − ZB1

1 0 0

∣∣∣∣∣∣= 0

xm (Zb1 − ZB1) − xn (Yb1 − YB1) = 0 →

cγ = E1sϕ1cα − sαZo − cαYo

e1sϕ1

(3a)

ri = bi − Bi =
⎛
⎝ eicϕixl + eisϕiyl + Xo − Eicϕi

eicϕixm + eisϕiym + Yo − Eisϕi

eicϕixn + eisϕiyn + Zo

⎞
⎠,

r2
0 = X2

o + Y2
o + Z2

o , δi = ri∣∣ri

∣∣ , i = 1, 2, 3

(3b)

It is found from the structure performance in Fig. 2 that the parallel wrist includes two independent
constrained forces fc0i (i = 1, 2) and two couple-constrained forces fci (i = 1, 3). fc0i (i = 1, 2) are exerted
onto r0 at O, fci are exerted onto mp at bi (i = 1, 3). Let ( f c0i, ci0) be the scalar and unit vectors of fc0i.
Since fc0i (i = 1, 2) do not generate any power during the moving of r0, ( fc0i⊥r0, fc0i |O) must be satisfied.
Since there are (x⊥r0, y⊥r0), (c01 = x, c02 = y) are satisfied. Based on the principle of virtual power,
fc0i (i = 1, 2) and their constrained torques satisfy

fc0ic0i · v + (fc0ic0i × o) · ω = 0 →(
xT (x × o)

T
)

V = 0,
(
yT (y × o)

T
)

V = 0
(4)

here, x, y, and o are the unit vectors of x, the unit vector of y and the vector of o in {B}, respectively.
https://doi.org/10.1017/S0263574723000620 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000620


2718 Yang Lu et al.

Let ( fci, ci) be the scalar and unit vectors of fci. Since fci (i = 1, 3) do not generate any power during
the moving of mp, (ci |Ri2 and c3 = −c1) must be satisfied. Let tci (i = 1, 3) be the constrained torques
exerted onto L. Let L be the unit vector of L. {( fci × ri)·L = tci, (i = 1, 3); tc1=tc3, tci |L} are satisfied
based on the balancing condition of the constrained torques. Therefore, there are

(r1 × fc1c1 + r3 × fc3c3) · L = 0 → (5)

fc3 = − (r1 × c1) · L
(r3 × c3) · L

fc1, c1 = x × δ1, c3 = −c1

Since neither the couple-constrained forces fci (i = 1, 3) nor the couple-constrained torques ei × fci

generate power, ( fc1|| fc3, ci⊥δi, ci ||Ri) are satisfied. It is known from the principle of virtual power that
the couple-constrained wrench must satisfy

(fc1c1 + fc3c3) · v + (e1 × fc1c1 + e3 × fc3c3) · ω = 0,

e3 = e1 − lvx
(6)

Substitute Eq. (5) for Eq. (6), it leads to

{[(r3 × c3) ·L] c1 − [(r1 × c1) · L] c3} · v + {e1 × [((r3 × c3) · L) · c1

− ((r1 × c1) · L) · c3] + lvx × ((r1 × c1) · L) · c3} · ω = 0
(7)

Eq. (7) can be simplified as below:

c · v + τ · ω = 0,
(
cT τ T

)
V = 0 (8)

The items c and τ in Eq. (8) are derived from Eq. (7) and c3 = −c1 as follows:

c = {[(r3 × c3) · L] c1 − [(r1 × c1) · L] c3} /lv

= {− [(r3 × c1) · L] c1 + [(r1 × c1) · L] c1} /lv

= {− [(L × r3) · c1] c1 + [(L × r1) · c1] c1} /lv

= L × (r1 − r3) /lv = L × (lvx − LL) /lv = X × x,

(9a)

τ = e1 × {[(r3 × c3) · L] c1 − [(r1 × c1) · L] c3} /lv

+lvx × [(r1 × c1) · L] c3/lv

= e1 × c + x × [(r1 × c1) · L] c3

= e1 × c − x × [(L × r1) · c1] c1

= e1 × c − x × (L × r1) = e1 × c − x × (X × r1)

(9b)

Let {vri, ari (i = 1, 2, 3)} be the input (velocity, acceleration) of the parallel wrist along ri. The formula
for solving vri is represented as below:

vri =
(
δ

T
i (ei × δi)

T
)

V (10)

Let (Vpr , Apr) be the general input velocity, the acceleration of the couple-constrained parallel wrist.
Let (V , A) be the general output velocity, the acceleration of m at o. Based on the formulas for solving
the displacement and the couple constrained forces, the relations of (Vpr , V) of the couple-constrained
parallel wrist are derived from Eqs. (9a), (9b), (10) as follows:

Vpr = JV , V = J−1Vpr, VT = VT
r

(
J−1
)T

,

Vpr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

vr1

vr2

vr3

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
T
1 (e1 × δ1)

T

δ
T
2 (e2 × δ2)

T

δ
T
3 (e3 × δ3)

T

xT (x × o)
T

yT (y × o)
T

cT τ T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11a)
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The relations of (Apr , A) of the couple-constrained parallel wrist are derived from Eqs. (11a) as
follows:

Apr = JA + J ′V = JA + VTHV , J ′ = VTH,

Apr =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ar1

ar2

ar3

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, J ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
′T
1 (e1 × δ1)

′T

δ
′T
2 (e2 × δ2)

′T

δ
′T
3 (e3 × δ3)

′T

x′T (x × o)
′T

y′T (y × o)
′T

c′T τ ′T

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1

h2

h3

h4

h5

h6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11b)

here, J and H are the 6 × 6 Jacobian matrix and the six layers 6 × 6 Hessian matrix of the couple-
constrained parallel wrist, respectively; hi (i = 1, 2, 3) are the 6 × 6 sub-matrices of H corresponding to
the actuation forces fai along ri; (h4, h5) are the 6 × 6 sub-matrices of H corresponding to constrained
forces ( fc01, fc02), respectively; h6 is the 6 × 6 sub-matrix of H corresponding to fci (i = 1, 3).

In order to solve the sub-items of H in Eq. (11), several extended skew-symmetric matrices and
relative formulas are derived and explained as follows.

Let ζ and ζ̂ = s(ζ ) be a vector and its skew-symmetric matrix, respectively. Let C be a three layers
3 × 3 constant matrix. Let Ik (k = 1, 2, 3) be the 3 × 3 sub-matrixes of C. The relative formulas are
represented by [21].

The formulas for solving hi (i = 1, 2, 3) in Eq. (11b) are derived by [22]. The formulas for solving h4

and h5 in Eq. (11b) are derived as follows:

x′ = ω × x, x′T = ωT x̂ = VT

(
0
x̂

)
, (x × o)′T = VT

(−x̂
x̂ô

)
,

h4 = ( x′T (x × o)′T ) =
(

0 −x̂
x̂ x̂ô

)
, h5 =

(
0 −ŷ
ŷ ŷô

) (12)

The formulas for solving h6 in Eq. (11b) are derived as

c′ = (X × x)
′ = X × (ω × x) = (

03×3 −X̂x̂
)

V ,
c′ = (

hc1 hc2

)
V , hc1 = 03×3, hc2 = −X̂x̂, r′

1 = v + ω × e1

(13a)

τ ′ = (e1 × c)′ − (x × W)
′

=
(
ĉê1 − ê1X̂x̂ − Ŵx̂ + x̂X̂ê1

)
ω − x̂X̂v = (

hτ1 hτ2

)
V (13b)

W = X × r1, hτ1 = −x̂X̂,

hτ2 = ĉê1 − ê1X̂x̂ − ŵx̂ + x̂X̂ê1,

(
(c′)T

(τ ′)T
)= VTh6, h6 =

(
hT

c1 hT
τ1

hT
c2 hT

τ2

) (13c)

3. Workspace of couple-constrained parallel wrist with three flexible fingers
The parameters of the parallel wrist are listed in Table I.

The reachable workspace of the gripper is an important index to evaluate its operation performance.
A reachable workspace of the gripper is constructed, see Fig. 3.

Since the couple-constrained parallel wrist has a symmetry structure in OYZ plane, its reachable
workspace is also symmetry in OXZ plane. Let {rimax, rimin, �ri (i = 1, 2, 3)} be (the maximum extension,
the maximum extension, and the increment from rimin to rimax) of ri, respectively. Let {rwrjmax, rwrjmin, �rwrj

(j = 1, 2, 3)} be (the maximum extension, the maximum extension and the increment from rwrjmin to
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Table I. Parameters of couple-constrained parallel wrist.

Parameters and symbols values, unit
sm, sB sides of m and B
ar1, ar2, ar3 input accelerations
initial length of ri, (i = 1, 2, 3)
ri input length range input
increment �ri of ri

μ,η, f, t
the jth finger force f wj

the jth finger torque twj

mo, uIu

150/31/2, 250 mm
2, 1, 1 mm/s2

360 mm
360 → 500 mm
10 mm
0, 1, 0, 0
[1 2 3]T N
[4 5 6]T N · m
1 kg, I kg·m2

(a)

(b)

Figure 3. Reachable workspaces of couple-constrained parallel wrist with three flexible fingers at
fingertips. A isometric view with dimensions (a). A top view (b).

rwrjmax) of rwrj , respectively. In the light of the basic parameters listed in Table I, the reachable workspace
W of the gripper is constructed using Matlab and is transformed into Solidwork using CAD variation
geometry [23]. It is known from Fig. 3 that the workspaces of the three finger equivalent mechanisms
at the fingertips in the developed gripper are quite large.

4. Dynamics model of couple-constrained parallel wrist with three flexible fingers
The kinematics of moving limbs ri are the pre-conditions of the dynamics analysis of the couple-
constrained parallel wrist with three flexible fingers. Since the kinematics of ri are quite complicated,
the derivation kinematics formulas of ri are explained in Appendix A. A dynamics model of the gripper
is shown in Fig. 4. Some symbols for establishing the dynamics model are explained as follows.

Let gi be the piston rod as g = p or the cylinder as g = q in ri. Each of the limbs ri (i = 0, 1, 2, 3)
is composed of a piton rod with its mass center pi and a cylinder with its mass center qi. Let agi be the
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Figure 4. Dynamics model of limbs ri (i = 0, 1, 2, 3).

translational acceleration of the moving link gi in ri at its mass center in {B}. Let εi angular velocity
acceleration of ri. Let Jgi (g = p, q) be the Jacobian matrix of the moving link gi in ri. Let Vgi and Agi

be the general velocity and the general acceleration of gi in ri (i = 0, 1, 2, 3). The formulas for solving
{agi, εi, Jgi (g = p, q), Vgi, Agi} are derived in Appendix A.

Let fu, tu, mu, Iu, Gu {(u = o, pi, qi; i = 0, 1, 2, 3)} be the inertial force, inertial torque, the mass, the
inertial moment, the gravity of the moving links at their mass centers in {B}, respectively. Let ( f , t) be
the working-load wrench applied on mp at o. Let ( fd , td) be the damping force and torque applied on
mp at o, respectively. Let μ be a damping coefficient. The formulas for solving ( fu, tu, Gu, Iu, fd , td) are
represented as (

f u

tu

)
= −MuAu −

(
0

ωu × (Iuωu)

)
, Mu =

(
muI 0

0 Iu

)
,

Gu = mu g, f u = −mu au, {u = m, pi, qi, (i = 0, 1, 2, 3)},
tu = −Iuεu − ωu × (Iuωu), f d = −μv, td = −μω

(14)

Let fai (i = 1, 2, 3) be the scalar of the input actuation force along ri. Let f j (j = 1, 2, 3) be the scalar of
the input actuation forces of the jth finger. Let f c be the scalar of the constrained force exerted on mp of
the parallel wrist, see Fig. 3. Let Fr be the general actuation/constrained forces of the developed parallel
wrist and the three fingers. Let V f be the general input velocity of the three finger mechanisms. Let V r

be the general input velocity of the developed parallel wrist and the three fingers. They are represented
in {B} based on Eq. (11) as follows:

V r =
(

Vpr

V f

)
, Fr =

(
Fpr

Ff

)
, V f =

⎛
⎝ y′

1

y′
2

y′
3

⎞
⎠, Ff =

⎛
⎝ f1

f2

f3

⎞
⎠,

Vpr = (
vr1 vr2 vr3 0 0 0

)T
,

Fpr = (
fa1 fa2 fa3 fc01 fc02 fc

)T

(15)

Let ( fwj , twj) be the working-load wrench applied on the jth fingertip wj . Let Vwj be the general
velocity of the jth fingertip wj in {B}. When ignoring the friction of all the joints in the mechanism, f
and t are applied onto mp, based on the principle of virtual work, a power equation is derived as

VT
r Fr + VT

(
f + f o + go + f d

t + to + td

)
+ ∑3

j=1V
T
wj

(
f wj

twj

)

+∑3
i=0

(
VT

pi

(
f pi + gpi

tpi

)
+ VT

qi

(
f qi + gqi

tqi

))
= 0

(16)
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here, the items from the left to the right in Eq. (16) are the powers generated by Fr , by ( fo, to, go) of m
and ( f , t) and ( fd , td) applied on mp, by ( fwi, twi), and by ( fL,tL,gL), respectively.

A formula for solving VT
wj is represented as follows:

VT
wj = VT

pr

(
JwjJ−1

)T + VT
f

(
B
tjT

tjJwrjJej

)T (17)

here, VT
wj is derived (Lu, et al. 2021).

The relations Vpr and V are represented based on Eqs. (11), (16) as follows:

VT
r Fr = VT

prFpr + VT
f Ff , VT = VT

pr

(
J−1
)T

,

VT
gi = VTJT

gi = VT
pr

(
J−1
)T JT

gi, (g = p, q)
(18)

Considering the friction of the joints in the mechanism, the efficiency (η ≤ 1) of the developed gripper
can be added here. Thus, the formulas for solving the general dynamic actuation forces and the dynamic
constrained forces are derived by substitute Eqs. (17), (18) into Eq. (16) as

Ff = −1

η

3∑
j=1

(
B
tjT

tjJwrjJEj

)T
(

f wj

twj

)
, (19a)

Fpr = − (
J−1
)T
{

1

η

((
f
t

)
− μV − MoA +

(
mog

−ωo × (Ioωo)

))

+
3∑

i=0

JT
pi

(
−MpiApi +

(
mpig

−ωi ×
(
Ipiωi

)))

+
3∑

i=0

JT
qi

(
−MqiAqi +

(
mqig

−ωi ×
(
Iqiωi

)))+∑3
j=1

(
Jwj

)T
(

f wj

twj

)} (19b)

The formulae for solving the dynamic couple-constrained forces fci (i = 1, 3) and the dynamic
constrained torque tc exerted on to L are derived by utilizing Eqs. (7), (19b) as follows:

fc = fc1 + fc3, fc1 = fc

1 + k
, fc3 = fc − fc1,

tc = (r1 × fc1c1) · X, k = (r1 × c1) · x/ [(r3 × c1) · x]
(20)

5. Theoretical solutions of kinematics/dynamics
A program is compiled using Matlab based on the theoretical formulas in Sections 2, 4 and Appendix A.
Theoretical kinematics solutions of mp of parallel wrist are solved, see Fig. 5.

The dynamic actuation forces fai (i = 1, 2, 3) of the parallel wrist are solved, see Fig. 6a. The dynamic
actuation forces f j (j = 1, 2, 3) of the fingers are solved, see Fig. 6b. The dynamic constrained forces f c0i

(i = 1, 2) of the parallel wrist exerted on r0 are solved, see Fig. 6c. The dynamic constrained forces fci

(i = 1, 3) of the parallel wrist exerted on L and the dynamic constrained torque tc are solved, see Fig. 6d.
In order to verify the correctness of the theoretical solutions of the gripper, an equivalent sim-

ulation mechanism of the gripper with three fingers and a logical block of RPR-type actuation
limbs r1 and r3, a logical block of SPU type actuation limb r2 are constructed, respectively, using
Matlab/Simulink/Mechanics, see Appendix B. The absolution errors �x between the maximum the-
oretical solutions x and the maximum simulation solutions xs are listed in Table II and Table A1. It
is known from Table II that the theoretical solutions coincide with that of the simulation mechanism.
Hence, the derived formulas in Sections 2, 3, and Appendix A are correct.

6. Experiment of prototype of couple-constrained parallel wrist with three flexible fingers
Two poses of prototype of couple-constrained parallel wrist with three flexible fingers are shown in
Fig. 7a, b.
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(a) (b)

(c) (d)

Figure 5. Theoretical kinematics solutions of the moving platform mp of couple-constrained parallel
wrist with three force flexible fingers.

(a) (b)

(c) (d)

Figure 6. Theoretical dynamics solutions of dynamic actuation forces, the dynamic constrained forces,
and torque of parallel wrist.
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Table II. Absolute errors �x = abs(x-xs) between the maximum theoretical solutions x and the
maximum simulation solutions xs.

�vx �vy �vz �ax �ay �az �ωx �ωy �ωz

−4.33 2.53 1.00 −5.07 −4.76 −1.31 −7.18 −1.22 9.87
× 10−13 × 10−13 × 10−13 × 10−12 × 10−12 × 10−12 × 10−13 × 10−12 × 10−14

�εx �εy �εz �f a1 �f a2 �f a3 �f c01 �f c02 �f c

8.00 −1.05 8.60 −2.47 4.49 −2.31 −4.12 1.36 9.50
× 10−12 × 10−12 × 10−14 × 10−7 × 10−7 × 10−7 × 10−5 × 10−6 × 10−8

(a) (b)

Figure 7. Prototype of couple-constrained parallel wrist with three flexible fingers for grabbing object
M = 25 kg in two poses as ri = rimin (i = 1, 2, 3) (a), and as r2 = r2max, r1 = r3 = rimin (b).

Let rimin (i = 1, 2, 3) and rimax be the minimum and maximum extension of actuation limbs ri.
Let M be the mass of the grabbed object. M is increased to 25 kg, see Fig. 7b. Let fsi be measured
forces of sensor of fingers i. A measured system is built to measure fsi as grabbing object with differ-
ent masses, see Fig. 8a. As grabbing object with M = 14 kg, the measured results of fsi are shown in
Fig. 8b.

It is known from the experiments the developed prototype of couple-constrained parallel wrist with
three measuring force flexible fingers that:

1. A heavy workload M = 25 kg can be grabbed and moved in the large workspace, see Fig. 3 and
Fig. 7b.

2. A large grabbing impact can be reduced greatly using a pre-pressured spring installed in the
finger, see Fig. 8b.

3. The measured forces fsi are varied smoothly as grabbing the object with constant mass and mov-
ing smoothly. ( f s1, f s2, f s3) are different with each other, which are dependent on the grapping
pose and the manufacturing precise of the finger, see Fig. 8b.

The measuring force flexible finger is formed by a screw motor 1 and a seat 2 fixed onto mp, a nut 3,
a sensor 4, a sleeve 5, a spring 6 and a inner sleeve in sleeve, a fingertip link 7, a long slice 8, a short
slice 9, see Fig. 9. A big heavy tub and an egg 10 can be grabbed, see Fig. 9.
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(a)

(b)

Figure 8. Measured system of sensor forces fsi of fingers in developed gripper as grabbing object with
different masses (a), Measured results of fsi as grabbing object with M = 14 kg (b).

Figure 9. A big heavy tub (a) and a easy breakage egg (b) grabbed by couple-constrained parallel
wrist with three flexible fingers.

7. Conclusions
The developed novel couple-constrained parallel wrist has three DOFs and quite large workspace which
is benefited to increase the dexterity of the gripper.

The couple-constrained parallel wrist with three measuring force flexible fingers can be used to grab
the heavy objects with various shapes or large volume. It also can be used to grab the small and easy
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breakage object. A large grabbing impact can be reduced greatly using a pre-pressured spring installed
in the finger.

The theoretical solutions of the kinematics and dynamics of the couple-constrained parallel wrist
with three measuring force flexible fingers are verified to be correct by its simulation mechanism. These
kinematics and dynamics models of the developed couple-constrained parallel wrist with three measur-
ing force flexible fingers provide a theoretical foundation for analysis of the dynamics and stiffness of
other grippers and their control.

Further study should be conducted on the synthesis and optimization of the kinematic parameters
of the overall gripper mechanism in order to increase the grabbing capability and the dexterity of the
gripper.
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Appendix A
A. Kinematics of moving limbs ri

The kinematic models of the moving limbs ri are shown in Fig. 3. Let vi (i = 1, 2, 3) be the translational
velocity of ri at point bi in {B}. Let (ωi, εi) be the angular (velocity and acceleration) of ri in {B}. gi

may be the piston rod as g = p or the cylinder as g = q in ri. The formulas of (ri, ei, v, ω, vi, ωi, vi) can
be represented as follows:

vi = vriδi + ωi × ri, vi = v + ω × ei, vi − vriδi = ωi × ri (A1)

The kinematics/statics formulas of the flexible finger have been derived by [21]. The kinematics
formulas of the moving limbs ri (i = 0, 1, 2, 3) are derived as follows.

A.1. Angular velocity/acceleration of actuation limbs ri
Cross multiply both sides of the first formula in Eq. (A1) in the right by ri, it leads to

δi × vi = δi × vriδi + riδi × (ωi × δi)

= riδi × (ωi × δi) = riωi − ri (δi · ωi) δi

(A2)

The upper ends of ri (i = 1, 2, 3) are connected with m by Ui at bi, Ui is formed by two crossed
revolute joints Rij (j = 1, 2), and (Ri1⊥Ri2, Ri1⊥z, Ri2⊥ri, R11|R31) are satisfied. Let Rij be the unit vector
of Rij . The angular velocities ωi (i = 1, 2, 3) of ri are satisfied as follows:

ωi + θ ′
i1Ri1 + θ ′

i2Ri2 = ω,

Ri2 = Ri1 × ri/|Ri1 × ri|, (i = 1, 2, 3)
(A3)

here, θ ′
ij (i = 1, 2, 3; j = 1, 2) are the scalar angular speeds of ri about Rij .

Cross multiply both sides of Eq. (A3) in the right by ri, it leads to

ω × ri − θ ′
i1Ri1 × ri − θ ′

i2Ri2 × ri = ωi × ri

= vi − vriδi = vi − (vi · δi) δi = −δ̂
2

i (v + ω × ei)
(A4)

Dot multiply both sides of Eq. (A4) in the right by Ri1 and Ri2, respectively, it leads to

(ω × ri) · Ri1 − (θ ′
i2Ri2 × ri) · Ri1 = δ̂

2

i

(−v + êiω
) · Ri1,

(ω × ri) · Ri2 − (θ ′
i1Ri1 × ri) · Ri2 = δ̂

2

i

(−v + êiω
) · Ri2

(A5)

The formulas of θ ′
i1 and θ ′

i2 are derived from Eq. (A5) as

θ ′
i1 =

[
− (

r̂iRi2

) · ω − δ̂
2

i

(
v − êiω

) · Ri2

]
/di1,

θ ′
i2 =

[(
r̂iRi1

) · ω + δ̂
2

i

(
v − êiω

) · Ri1

]
/di1,

di1 = (Ri1 × Ri2) · ri

(A6)
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Substitute Eqs. (A6) for Eq. (A5), a formula for solving ωi is derived from Eq. (A3) as follows:

ωi = ω − Ri1θ
′
i1 − Ri2θ

′
i2

= ω + Ri1

[
RT

i2 (ω × ri) + RT
i2δ̂

2

i

(
v − êiω

)]
/di1

−Ri2

[
RT

i1 (ω × ri) + RT
i1δ̂

2

i

(
v − êiω

)]
/di1,

ωi = ω − di2

[(
riδ̂iω

)
− δ̂

2

i

(
v − êiω

)]
/di1,

di2 = Ri1RT
i2 − Ri2RT

i1, di1 = ri · (Ri1 × Ri2)

(A7)

Eq. (A7) is simplified as follows:

ωi = (Jωi)3×6 V , Jωi =
(
Jωi1 Jωi2

)
/di1,

Jωi1 = di2δ̂
2

i , Ri2 = (Ri1 × ri) /|Ri1 × ri|,
Jωi2 = di1I − di2

(
r̂i + δ̂

2

i êi

)
= di1I − di2r̂i − Jωi1êi

(A8)

The items {di2, ri · (Ri1 × Ri2)′, di2r̂′
i, d′

i1} for solving εi are derived as follows:

Ri1 · Ri2 = 0, R′
i1 = ω × Ri1, R′

i2 = ωi × Ri2,

di2 = Ri1RT
i2 − Ri2RT

i1 = s (Ri2 × Ri1), Ri2 · ri = 0,[
(Ri2 × Ri1)

′]T = (R′
i2 × Ri1 + Ri2 × R′

i1)
T

= (ωi · Ri1) RT
i2 − (ω · Ri2) RT

i1 = ωT
i Ri1RT

i2 − ωTRi2RT
i1,

(A9)

ri · (Ri1 × Ri2)
′ = −ri · (Ri2 × Ri1)

′

= − (ωi · Ri1) (ri · Ri2) + (Ri2 · ω) (ri · Ri1)

= ωTRi2 (ri · Ri1), di2r̂′
i = − (r′

i)
T
(di2C) = −VT

(
I
êi

)
(di2C),

d′
i1 = [(Ri1 × Ri2) · ri]′ = r′

i · (Ri1 × Ri2) + ri · (Ri1 × Ri2)
′

= (v + ω × ei)
T
(Ri1 × Ri2) + ωTRi2 (ri · Ri1)

= VT

[(
I
êi

)
(Ri1 × Ri2) +

(
0
I

)
Ri2 (ri · Ri1)

]

The items {d′
i2, di2δ̂

′
i, di2δ̂

2

i ê′
i, di2(δ̂

2

i )
′} for solving εi are derived from Eq. (A9) as follows:

d′
i2 = s (Ri2 × Ri1)

′ = [
(Ri2 × Ri1)

′]T C

= [(
ωT

i Ri1

)
RT

i2 − (
ωTRi2

)
RT

i1

]
C = VT

{[(
JT

ωiRi1

)
RT

i2 −
(

0
Ri2RT

i1

)]
Ce

}
,

(A10)

di2δ̂
′
i = − (δ′

i)
T di2C = VT

ri

(
δ̂

2

i

êiδ̂
2

i

)
(di2C),

di2δ̂
2

i ê′
i = − (e′

i)
T
[(

di2δ̂
2

i

)
C
]
= −VT

(
0
êi

) [(
di2δ̂

2

i

)
C
]

,

di2

(
δ̂

2

i

)′
= di2

(
δ̂′

iδ̂i + δ̂iδ̂
′
i

)
= − (δ′

i)
T
[
di2Cδ̂i +

(
di2δ̂i

)
C
]

= VT

(
δ̂

2

i

êiδ̂
2

i

) [di2Cδ̂i +
(
di2δ̂i

)
C
]

ri
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Next, the formulas for solving εi are derived from Eqs. (A9) and (A10) as follows:

εi = ω′
i = JωiA + J ′

ωiV , J ′
ωi =

[(
J ′

ωi1 J ′
ωi2

)− d′
i1Jωi

]
/di1 = VTHωi,

J ′
ωi1 =

(
di2δ̂

2

i

)′
= d′

i2δ̂
2

i + di2

(
δ̂

2

i

)′
= VThωi1,

hωi1 =
(

JT
ωiRi1RT

i2 −
(

0
R42RT

41

))
Ceδ̂

2

i +
(

δ̂
2

i

êiδ̂
2

i

)
(di2C) δ̂i +

(
di2δ̂i

)
C

ri

(A11)

J ′
ωi2 = (

di1I − di2r̂i − Jωi1êi

)′
= d′

i1I − d′
i2r̂i − di2r̂′

i − Jωi1ê′
i − J ′

ωi1êi = VThωi2,

hωi2 =
(

I
êi

) [
(Ri1 × Ri2) I + di2C

]+(
0
I

)
Ri2 (ri · Ri1) I

−
[(

JT
ωiRi1

)
RT

i2 −
(

0
Ri2RT

i1

)]
Cer̂i +

(
0
êi

)
(Jωi1C) − hωi1êi,

Hωi = 1

di1

{(
hωi1 hωi2

)−
[(

I
êi

)
(Ri1 × Ri2) +

(
0
I

)
Ri2 (ri · Ri1)

]
Jωi

}

Hωi is the 3 × 6 Hessian matrix mapped from V to εi.

A.2. Translational velocity and acceleration of ri
Each of the limbs ri (i = 1, 2, 3) is composed of a piton rod with its mass center pi and a cylinder with
its mass center qi. Let vgi and agi be, respectively, the translational velocity and the acceleration of the
moving link gi in ri at its mass center in {B}, g = p for the piston rod, g = q for the cylinder. Let ri be
the distance from Bi to bi. Let lpi be the distance from bi to pi. Let lqi be the distance from Bi to qi. The
formulas for solving vgi are derived as follows:

vpi = vriδi + ωi ×
(
ri − lpi

)
δi = JvpiV ,

Jvpi = δiδ
T
i

(
I −êi

)− (
ri − lpi

)
δ̂iJωi,

vqi = ωi × lqiδi = JvqiV , Jvqi = −lqiδ̂iJωi

(A12)

here, Jvgi (g = p, q) is the translational Jacobian matrix of the moving link gi in ri.
In order to derive the formula for solving agi, several items {r′

i, δ
′
i, (δ′

i)
T , δi(δ

′
i)

T , δiδ
T
i ê′

i, δ̂iJ ′
ωi, (i = 1, 2,

3)} are derived as follows:

r′
i = vri = r′

i · δi = (r′
i)

T δi = (v + ω × ei)
T δi

= [(
I −êi

)
V
]T

δi = VT

(
I
êi

)
δi = VT

(
δi

êiδi

)
,

δ′
i = (ri/ri)

′ = − [(v + ω × ei) × δi]
T Cδi/ri

= −
[

VT

(
δ̂i

êiδ̂i

)]
C

δi

ri

= −VT

ri

[(
δ̂i

êiδ̂i

)
Ce

]
δi,

δ̂′
i = (δ′

i)
T C = −

(
VT

(
δ̂

2

i

êiδ̂
2

i

))
C
ri

= −VT

((
δ̂

2

i

êiδ̂
2

i

)
Ce

ri

)
,

δiδ
T
i ê′

i = − (e′
i)

T
[(

δiδ
T
i

)
C
]= −VT

(
0
êi

) [(
δiδ

T
i

)
C
]

,

(A13)
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(δ′
i)

T = {δi × [(v + ω × ei) × δi]}T
/ri

= − [(v + ω × ei) × δi]
T δ̂i

ri

= −VT

ri

(
δ̂

2

i

êiδ̂
2

i

)
,

δi (δ
′
i)

T = δi {−s [(v + ω × ei) × δi] δi/ri}T

= − [(v + ω × ei) × δi]
T δiδi

TC
ri

= −VT

(
δ̂i

êiδ̂i

) (
δiδi

TC
)

ri

,

δ̂iJ ′
ωi = δ̂i

[(
J ′

ωi1 J ′
ωi2

)− d′
i1Jωi

]
/di1 = VTh,

δ̂iJ ′
ωi1 = δ̂i

(
di2δ̂

2

i

)′
= δ̂id′

i2δ̂
2

i + δ̂idi2

(
δ̂

2

i

)′
= VThi1,

hi1 = −
(

JT
ωiRi1RT

i2 −
(

0
I

)
Ri2RT

i1

) (
δ̂iC

)
δ̂

2

i

+
(

I
êi

)
δ̂

2

i

ri

{(
δ̂idi2C

)
δ̂i +

[(
δ̂idi2

)
δ̂i

]
C
}

,

δ̂iJ ′
ωi2 = δ̂i

(
d′

i1I − di2r̂′
i − d′

i2r̂i − Jωi1ê′
i − J ′

ωi1êi

)= VThi2,

hi2 =
(

I
êi

)
(Ri1 × Ri2) δ̂i +

(
0
I

)
Ri2 (ri · Ri1) δ̂i

+
(

I
êi

) {[
δ̂is (Ri2 × Ri1)

]
C
}

+ (
JT

ωiRi1RT
i2

) (
δ̂iC

)
r̂i

−
((

0

I

)
Ri2RT

i1

) (
δ̂iC

)
r̂i +

(
0
êi

) [(
δ̂iJωi1

)
C
]
− hi1êi,

h =
(
hi1 hi2

)
di1

−
[(

I
êi

)
(Ri1 × Ri2) +

(
0
I

)
Ri2 (ri · Ri1)

]
δ̂iJωi

di1

]

Differentiating vpi (i = 1, 2, 3) in Eq. (A12), api is derived using Eqs. (A12) and (A13) as follows:

api = v′
pi = JvpiA + J ′

vpiV , J ′
vpi = VTHvpi,

J ′
vpi =

[(
δiδ

T
i − (

δiδ
T
i

)
êi

)− (
ri − lpi

)
δ̂iJωi

]
′

=
[((

δ
′

i δ
T
i + δiδ

′T
i

)
−
(
δ

′
i δ

T
i + δiδ

′T
i

)
êi − δiδ

T
i ê′

i

)
−
[(

ri − lpi

)′
δ̂i +

(
ri − lpi

)
δ̂′

i

]
Jωi −

(
ri − lpi

)
δ̂iJ ′

ωi,

(A14)

Hvpi=
(
hpi1 hpi2

)− (
ri − lpi

)
h

−
(

I
êi

)[
δiδ̂i −

(
ri − lpi

) δ̂
2

i

ri

Ce

]
Jωi,

hpi1= − 1

ri

{((
δ̂i

êiδ̂i

)
Ce

)
δiδ

T
i +

(
δ̂i

êiδ̂i

) [(
δiδ

T
i

)
C
]}

,

hpi2= − hpi1êi +
(

0
êi

) [(
δ1δ

T
1

)
C
]
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Differentiating vqi (i = 1, 2, 3) in Eq. (A12), aqi is derived using Eqs. (A12) as follows:

aqi = JvqiA + J ′
qviV , J ′

qvi =
(
−lqiδ̂iJωi

)′ = −lqi

(
δ̂′

iJωi + δ̂iJ ′
ωi

)
= VTHvqi,

Hvqi = lqi

ri

(
δ̂

2

i

êiδ̂
2

i

)
CeJωi − lqih (A15)

A.3. Velocity and acceleration of moving links in r0
Let ω0 and ε0 be the angular velocity and the angular acceleration of r0 in {B}, respectively. Since the
upper end of r0 is fixed onto m at o and r0|z is satisfied, ω0 = ω and ε0 = ε are satisfied. r0 is composed
of a piton rod with its mass center p0 and a cylinder with its mass center q0. Let r0 be the distance from
O to o. Let lp0 be the distance from o to p0. Let lq0 be the distance from O to q0. Let vg0 and ag0 be
respectively the translational velocity and the acceleration of the moving link g0 in r0 at its mass center
in {B}, g = p for the piston rod, g = q for the cylinder. As i = 0, ei = 0 are satisfied, the angular velocity
and translational velocity kinematics of g0 are represented as follows:

ω0 = Jω0V = ω, Jω0 = (
0 I

)
, J ′

ω0 = VTHω0,

ε0 = Jω0A + VTHω0V = Jω0A = ε,

Hω0 = 0, J ′
ω0 = 0, vp0 = Jvp0V , vq0 = Jvq0V ,

Jvp0 = δ0δ
T
0

(
I 0

)− (
r0 − lp0

)
δ̂0Jω0, Jvq0 = −lq0δ̂0Jω0

(A16)

here, Jω0 is the 3 × 6 rotational Jacobian matrix of r0; Hω0 is the 3 × 6 rotational Hessian matrix of r0.
The several items {δ′

0, (δ′
0)T , δ0(δ′

0)
T} for solving ag0 are derived from Eqs. (A13) as follows:

δ′
0 = −VT

r0

(
δ̂0

0

)
Ceδ0, (δ′

0)
T = −VT

r0

(
δ̂

2

0

0

)
,

δ0δ
′T
0 = −VT

r0

(
δ̂0

0

) (
δ0δ0

TC
) (A17)

Differentiating vp0 in Eq. (A16), the formulas for solving ap0 are derived using Eqs. (A16) and (A17)
as follows:

ap0 = Jvp0A + J ′
vp0V = Jvp0A + VTHvp0V ,

J ′
vp0 =

[
δ0δ

T
0

(
I 0

)− (
r0 − lp0

)
δ̂0Jω0

]′ = VTHvp0,

Hvp0 =
(

−
((

δ̂0

0

)
Ce

)
δ0δ

T
0

r0

− 1

r0

(
δ̂0

0

) [(
δ0δ0

T
)

C
]

0
)

−
(

δ̂0

0

)
δ̂0Jω0 +

(
r0 − lp0

)
r0

(
δ̂

2

0

0

)
CeJω0

(A18)

here, Hvp0 is the 6 × 6 translational Hessian matrix of the piston rod as g = p in r0.
Differentiating vq0 in Eq. (A16), the formulas for solving aq0 are derived using Eqs. (A16) and (A17)

as follows:

aq0 = Jvq0A + VTHvq0V , Hvq0 = lq0

r0

(
δ̂

2

0

0

)
CeJω0,

J ′
vq0 =

(
−lq0δ̂0Jω0

)′ = −lq0

[
(δ′

0)
T C
]

Jω0 = VTHvq0

(A19)

here, Hvq0 is the 6 × 6 translational Hessian matrix of the cylinder rod in r0.
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The formulas for solving the general velocity Vgi and the general acceleration Agi of the moving links
gi in ri (i = 0, 1, 2, 3) are represented as follows:

Vgi =
(

vgi

ωi

)
= JgiV , Jgi =

(
Jvgi

Jωi

)
, J ′

gi = VTHgi,

Agi =
(

agi

εi

)
= JgiA + VTHgiV , Hgi =

(
Hvgi

Hωi

)
,

i = 0, 1, 2, 3;
g = p, q

(A20)

Appendix B
A logical block of equivalent simulation mechanism of the gripper with three fingers and its simulation
mechanism are constructed by Matlab/Simulink/Mechanics, see Fig. B1.

(a) (b)

Figure B1. A logical block of equivalent simulation mechanism of the gripper with three fingers (a)
and its simulation mechanism (b)

A logical block of parallel wrist is constructed using Matlab/Simulink/Mechanics, see Fig. B2.

Figure B2. A logical block of parallel wrist
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A logical block of RPR-type actuation limbs r1, r3 are constructed using Matlab/Simulink/Mechanics,
see Fig. B3.

Figure B3. Logical block of RPR-type actuation limb r1.

A logical block of finger is constructed using Matlab/Simulink/Mechanics [20], see Fig. B4.

Figure B4. A logical block of finger.
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Table B1. Absolute errors �x = abs(x-xs) between the maximum theoretical solutions x and the
maximum simulation solutions xs

�vq0x �vq0y �vq0z �aq0x �aq0y �aq0z �ωr0x �ωr0y �ωr0z

1.02
× 10−14

3.73
× 10−14

9.99
× 10−15

6.35
× 10−12

3.79
× 10−12

1.30
× 10−12

−3.85
× 10−13

9.95
× 10−14

1.07
× 10−14

�vp0x �vp0y �vp0z �ap0x �ap0y �ap0z �εr0x �εr0y �εr0z

−1.07
× 10−14

7.58
× 10−14

−1.01
× 10−13

6.25
× 10−12

3.73
× 10−12

1.69
× 10−12 ≤10−16 ≤10−16 ≤10−16

�vq1x �vq1y �vq1z �aq1x �aq1y �aq1z �ωr1x �ωr1y �ωr1z

1.02
× 10−14

3.74
× 10−14

9.99
× 10−15

9.99
× 10−16

9.99
× 10−16

1.11
× 10−16

−3.81
× 10−13

1.03
× 10−13

1.07
× 10−14

�vp1x �vp1y �vp1z �ap1x �ap1y �ap1z �εr1x �εr1y �εr1z

−9.95
× 10−14

7.69
× 10−14

−1.07
× 10−14

9.99
× 10−15

9.99
× 10−15

9.99
× 10−15

9.99
× 10−15

9.77
× 10−15

9.99
× 10−16

�vq2x �vq2y �vq2z �aq2x �aq2y �aq2z �ωr2x �ωr2y �ωr2z

1.02
× 10−14

2.42
× 10−13

−3.72
× 10−14

−4.95
× 10−12

−1.22
× 10−12

−3.96
× 10−12

6.33
× 10−13

−1.07
× 10−13

1.07
× 10−14

�vp2x �vp2y �vp2z �ap2x �ap2y �ap2z �εr2x �εr2y �εr2z

1.07
× 10−14

9.45
× 10−14

1.82
× 10−14

−2.16
× 10−12

4.43
× 10−13

5.01
× 10−13

4.51
× 10−12

2.23
× 10−11

−2.96
× 10−12

�vq3x �vq3y �vq3z �aq3x �aq3y �aq3z �ωr3x �ωr3y �ωr3z

−1.02
× 10−14

3.73
× 10−14

−6.00
× 10−15

−4.83
× 10−12

−7.42
× 10−12

−3.93
× 10−12

−3.81
× 10−13

1.07
× 10−13

−2.04
× 10−14

�vp3x �vp3y �vp3z �ap3x �ap3y �ap3z �εr3x �εr3y �εr3z

−2.04
× 10−14

−7.68
× 10−14

1.07
× 10−14

−1.97
× 10−12

3.00
× 10−14

−1.80
× 10−13

−1.02
× 10−14

1.93
× 10−11

−3.96
× 10−12

�ωL �εL �f a1 �f a2 �f a3 �f c01 �f c02 �f c

−1.01
× 10−13

−1.02
× 10−14

−2.47
× 10−7

4.49
× 10−7

−2.31
× 10−7

−4.12
× 10−5

1.36
× 10−6

9.50
× 10−8
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