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Summary

The coniferous shrub Oliver’s plum yew (Cephalotaxus oliveri) is endemic to southern
China with potential medicinal use for cancer treatment and ecological value in sustaining
China’s threatened subtropical forest ecosystems. Comprehensive understanding of the current
spatial patterns of this vulnerable species vis-à-vis climatic conditions is crucial for its sustained
economic use and conservation. Based on 100 reliable occurrence records and nine environ-
mental variables,MaxEnt and QGIS programs were used to predict the potential geographical
distribution of C. oliveri in China. Combined with percentage contribution and permutation
importance, the jackknife statistical method was used to test and evaluate pertinent factors
restricting the potential distribution of C. oliveri. The response curves of critical bioclimatic
factors were employed to determine the potential species range. The current core potential dis-
tribution areas were concentrated in China’s central and south-west regions. Temperature was
identified as the crucial determinant of species distribution patterns, particularly themean tem-
perature of the coldest quarter. Precipitation was a necessary but not critical secondary factor.
These findings should inform the ex situ conservation and cultivation of C. oliveri in China and
its introduction to other parts of the world for similar purposes.

Introduction

The continual changes in global temperature and precipitation, in terms of magnitude, ampli-
tude, spatial spread and extremes, could modify the geographical distribution of ecosystems and
biological populations at different scales (Sorte et al. 2013). Since the last Ice Age, notable climate
change has altered many species patterns, increased habitat fragmentation, and reduced genetic
diversity in wild populations (Wan et al. 2021). The climate has profoundly influenced species
survival, dissemination and distribution (Song et al. 2021).

Climate impacts on species patterns represent a primary conservation consideration, to
which the prediction of current potential distributions and simulating historical and future dis-
tributions can contribute by identifying recovery and relocation sites for the conservation of rare
and endangered plants (Zhang et al. 2014, Yang et al. 2021). Species distributionmodels (SDMs)
can assess climate effects on such plants (McCune 2016), evaluate species–environment inter-
actions and predict habitat changes under different climate scenarios (Xie et al. 2021). Based on
related theories, data formats and analytical methods, successful SDMs have been developed,
such as BIOCLIM, ENFA, GARP and MaxEnt (Elith et al. 2006, Elith & Leathwick 2009),
the latter being the most widely used ecological niche model (Xie et al. 2021, Yang et al. 2021).

MaxEnt uses a machine-learning technique – maximum entropy modelling – to simulate
species niches and distributions (Merow et al. 2013). It expresses a probability distribution from
a set of environmental grids and georeferenced occurrence sites and predicts the suitability of
conditions for the species in each grid cell (Phillips et al. 2006). Depending on the assumptions
of the input data and biological sampling efforts leading to the occurrence records, the result
may be interpreted as the anticipated probability of presence or expected local abundance
(Phillips et al. 2017). MaxEnt has the advantages of a simple modelling process, accurate pre-
diction and the straightforward interpretation of results. It has been widely applied in the con-
servation of endangered species (Abolmaali et al. 2018, Cotrina Sánchez et al. 2021, Dad &
Rashid 2022).

Cephalotaxus oliveriMast. (Oliver’s plum yew, family Cephalotaxaceae) is a coniferous shrub
endemic to southern China. Its current biogeographical range stretches from north Guangdong
to east Jiangxi, Hunan, north-west Hubei, south and west Sichuan, Guizhou and south-east and
north-east Yunan (Supplementary Fig. S1, available online). It is often found in the understory
shrub layer of subtropical evergreen broad-leaved forests or mixed evergreen deciduous broad-
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leaved forests. Mainly dwelling in valleys and beside streams, it pre-
fers warm and moist habitats (Fu et al. 2017).

C. oliveri has a wide range of uses. The alkaloids in its bark,
twigs, roots and seeds (Ma et al. 2020) have anti-carcinogenic
properties for treating human non-lymphoid leukaemia (Zhang
et al. 1978). Its ornamental qualities suit landscape planting.
The wood has been used for handicrafts, the leaves for gum-mak-
ing and the seeds for extracting oil (Zhou et al. 1997). The species
has received extensive scientific investigations in taxonomy, cytol-
ogy, phytochemistry, molecular systematics, ecology, genetic
diversity, propagation and population conservation (Zhou et al.
1997, Ai et al. 2010). However, relatively little is known about
its geographical distribution and the factors underlying this
distribution.

Continual development has threatened its survival and popula-
tion growth. Besides exploiting its natural products, its habitats
have been disturbed or lost due to logging and farmland expansion.
Its suitable actual and potential biogeographical ranges have suf-
fered from shrinkage and fragmentation (Han et al. 2021). In addi-
tion, some inherent biological traits have contributed to its decline.
It is beset by low population genetic diversity, long seed dormancy,
weak natural reproduction ability and stringent ecological require-
ments for growth. The wild populations of C. oliveri have declined
sharply, demanding listing as a national grade II key protected wild
plant in China (Pan et al. 2011, Wang et al. 2016). The
International Union for Conservation of Nature (IUCN) Red
List of Threatened Species has assigned it under the vulnerable
(VU) category (Liao & Yang 2022).

Our study aimed to answer two questions about the distribution
of C. oliveri at the regional scale: (1)What is the predicted potential
spatial distribution pattern? (2) What is the correlation between
the potential suitable distribution pattern and environmental fac-
tors? Our goal is to inform conservation and management.

Materials and methods

Establishing species occurrence records

Occurrence records of C. oliveri from 1950 to 2020 were collected
from key websites, including the Chinese Virtual Herbarium
(http://www.cvh.ac.cn), the Plant Photo Bank of China (http://
www. Plantphotophoto.cn), the Teaching Specimen Resource
Sharing Platform (http://mnh.scu.edu.cn/main.aspx) and the
National Specimen Information Infrastructure (http://www.nsii.
org.cn/), and the published literature. The gathered data were
checked to remove duplicated records. The values of spatial corre-
lation (nugget-to-sill ratio) of <25%, 25–75% and >75% were
defined as strong, medium and weak, respectively. We deleted
records with strong spatial correlation. Finally, 100 valid occur-
rence records of C. oliveri were plotted on a map (Fig. S1).

Selecting environmental variables

Nineteen bioclimatic variables were extracted using ‘Extract value
by points’ in DIVA-GIS 7.5 (data source: WorldClim, http://www.
worldclim.org) (Hijmans et al. 2001). As the annual average tem-
perature and annual average precipitation variables were consid-
ered too general, they were removed from the dataset (Puchałka
et al. 2021). The significant associations (multicollinearity)
between environmental variables could lead to model overfitting
and so compromise precision (Zhang et al. 2018, Liu et al.
2020). The correlations were examined using Pearson’s correlation
coefficient, and highly associated environmental factors were

eliminated (Pearson’s correlation value >0.80; Khanum et al.
2013, Xie et al. 2021), leading to nine of the 19 initial environmen-
tal variables being retained (Table 1).

Modelling species distribution

The nine selected environmental variables and species occurrence
records of C. oliveri were loaded into MaxEnt 3.3. The jackknife
test was employed to investigate the importance of specific factors
forMaxEnt predictions (Nguyen et al. 2021). For diverse environ-
mental variables used in prediction, the jackknife test can yield
training, test and area under the curve (AUC) gains for three sce-
narios (without variables, with only one variable and with all var-
iables). We used QGIS 3.12 to analyse the results generated by
MaxEnt (ASCII raster grids format; QGIS 2021). Based on the opti-
mal threshold of environmental factors (occurrence probability)
generated by MaxEnt, the potential habitats of C. oliveri in
China were classified into four suitability categories: excellent
(>0.6), good (0.4–0.6), fair (0.2–0.4) and poor (<0.2).

This study optimized the MaxEnt model in R 4.02 using the
ENMeval package (Muscarella et al., 2014). We calculated the
AUC of the receiver operating characteristic curve (ROC) to mea-
sure the accuracy of the generated models (Khanum et al. 2013).
An AUC of 0.5 indicates that the model performs no better than
random, whereas an AUC of 1.0 indicates perfect discrimination;
the best performer is the model with the highest AUC value (Qin
et al. 2017, Abdelaal et al. 2019). Generally, model performance
is classified as fail (0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), good
(0.8–0.9) and excellent (0.9–1.0) (Abolmaali et al. 2018, Ray
et al. 2018, Zhang et al. 2018).

Results

Evaluating model performance

The lines of omission from the training data were close to fore-
casted omission rates in the model, meaning that the correct fitting
of the training data and the test and training data were unique
(Fig. S2a). The AUC value for the reconstructed MaxEnt model
was 0.936 ± 0.074 (Fig. S2b), indicating that the current distribu-
tion of C. oliveri denoted by the selected variables was excellent.

Assessing the contributions of environmental variables

The jackknife method examined the importance of 17 environ-
mental variables in constructing the prediction model for the dis-
tribution of C. oliveri. Of the nine chosen environmental variables
(Table 1) affecting species distribution, Bio11 (mean temperature
of the coldest quarter), Bio16 (precipitation of the wettest quarter),
Bio8 (mean temperature of the wettest quarter) and Bio7 (temper-
ature annual range) had the highest contributions of 48.3%, 14.8%,
13.5% and 6.4%, respectively (total contribution exceeding 80%;
Table 2). The mean temperature of the coldest quarter (Bio11)
had the highest contribution, indirectly indicating that variables
with relatively high correlations (e.g., extreme low temperature)
would also influence the distribution of C. oliveri. The four varia-
bles with the highest permutation importance values were mean
temperature of the coldest quarter (Bio11), mean temperature of
the wettest quarter (Bio8), temperature annual range (Bio7) and
precipitation seasonality (Bio15) at 53.2%, 22.5%, 7.5% and
6.4%, respectively (Table 2). The final MaxEnt model determines
the permutation importance measure, not the path taken to reach
it. The above analysis shows that the main environmental factor
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driving the modern geographical distribution of C. oliveri is the
mean temperature of the coldest quarter (Bio11).

Bio11 demonstrated the highest gain in regularized training,
test and AUC, indicating its leading contribution to the distribu-
tion of C. oliveri (Fig. 1). Bio16, Bio14 and Bio2 were secondary to
Bio11, with a greater effect on C. oliveri under the three gain pat-
terns. In contrast, Bio5 and Bio8 had the lowest gain and the least
importance, with little effect on predicting species distribution
(Fig. 1). The results showed that temperature exerted a greater
effect on the distribution of C. oliveri than moisture. These envi-
ronmental variables showed a good fit to the data (Fig. 1 &Table 2).

The response curves built by MaxEnt for each environmental
variable showed the trend of the predicted distribution probability
(Fig. 2). Bio2, Bio7, Bio8, Bio11, Bio15, Bio16 and Bio18 showed
single-peaked curves, indicating that C. oliveri had significantly
adapted to these environmental variables.

The response curves of Bio11 (mean temperature of the coldest
quarter) and Bio16 (precipitation in the wettest quarter) illustrated
the effect of changing bioclimatic values on the distribution prob-
ability ofC. oliveri (Fig. 2). Below –5°C, the distribution probability
was almost zero. However, the distribution probability increased
sharply when Bio11 was above –5°C (Fig. 2). The distribution
probability reached the peak when Bio11 was c. 10°C, and the cur-
rent temperature range was the most suitable for C. oliveri. If the
mean temperature in the coldest quarter continued to rise, the dis-
tribution probability displayed a sharp drop to zero at 20°C. This

result was well corroborated by Fig. 3. Therefore, the suitable range
of the mean temperature of the coldest quarter for C. oliveri was
c. 5–10°C (Fig. 2). Moreover, the distribution probability of
C. oliveri reached a peak when the precipitation in the wettest quar-
ter (Bio16) was 500 mm, indicating this as the most suitable
rainfall amount and timing for its survival. Its suitable precipita-
tion in the wettest quarter was 500–700 mm (Fig. 2).

Predicting Cephalotaxus oliveri distribution in China

Under current climatic conditions, the suitable area is c. 95–120°E
and 22–32°N in China’s subtropical region, extending between the
Qinling Mountains, Huai River and Lingnan Mountains (Fig. 3 &
Table S1). The total suitable area (probability of prediction>0.4) is
144.33 × 104 km2, accounting for c. 15% of China’s territory. This
distribution occupies east China (Jiangsu, Zhejiang, Anhui, Fujian
and Guangdong provinces), central China (Hunan, Hubei, Jiangxi
and Henan), and south-west China (Guizhou, Chongqing, Sichuan,
Guangxi, Yunnan, southern Shaanxi and south-eastern Tibet)
(Fig. 3). In addition, sporadic outliers are found in Taiwan,
Hainan and Shanghai.

By habitat suitability, the total areas for the poor, fair, good
and excellent categories are 820.41 × 104 km2, 78.75 × 104 km2,
45.13 × 104 km2 and 20.45 × 104 km2, respectively, comprising
85.04%, 8.16%, 4.68% and 2.12% of China’s total land area
(Table S1). The excellent category mainly concentrates in central
China and south-western China (Fig. 3). In the core suitable
areas, Guizhou, Hunan and Jiangxi occupy the largest areas at
5.58 × 104 km2, 4.42 × 104 km2 and 4.17 × 104 km2, respectively,
followed by smaller areas in Chongqing, Sichuan and Hubei, each
at over 1 × 104 km2 (Table S1). Most of the regions mentioned
above are the actual distribution areas of C. oliveri, with habitats
conducive to their survival and growth. The remaining provinces’
optimal suitable areas (excellent category) are smaller and less con-
tinuous, among which Zhejiang Province has only 0.07 × 104 km2.
These results indicate that China’s central and south-western
regions are more suitable for C. oliveri growth than other regions.

Discussion

TheMaxEnt niche model showed that temperature was the crucial
factor limiting the current geographical distribution of C. oliveri.

Based on the omission rate, occurrence probability and cumu-
lative threshold generated byMaxEntmodelling (Fig. S2a), the test
omission rate could better match the predicted omission rate, indi-
cating that the training set and test set were independent.
Moreover, themodel fitted the training set better. In the simulation

Table 1. Pearson correlation coefficient matrix of the nine chosen environmental variables: maximum temperature of the warmest month (Bio5), temperature annual
range (Bio7), mean temperature of the wettest quarter (Bio8), mean temperature of the coldest quarter (Bio11), precipitation of the driest month (Bio14), precipitation
seasonality (Bio15), precipitation of the wettest quarter (Bio16) and precipitation of the warmest quarter (Bio18).

Bio2 Bio 5 Bio7 Bio8 Bio11 Bio14 Bio15 Bio16

Bio5 –0.28**
Bio7 –0.19* 0.56 **
Bio8 0.08 0.31** –0.20*
Bio11 0.31** 0.01 –0.78** 0.45**
Bio14 –0.41** 0.58** 0.45** –0.30** –0.16
Bio15 0.52** –0.59** –0.68** 0.25** 0.48** –0.79**
Bio16 –0.11 0.01 –0.43** 0.06 0.50** 0.30** 0.24*
Bio18 –0.01 -0.34** –0.67** 0.28** 0.53** –0.20* 0.54** 0.79**

*p< 0.05, **p < 0.01.

Table 2. Percentage contribution and permutation importance levels of the
nine environmental variables included in the MaxEnt models, ranked by
percentage contribution.

Symbol Bioclimatic variable Percentage
contribution

Permutation
importance

Bio11 Mean temperature of the
coldest quarter

48.3 53.2

Bio16 Precipitation of the wettest
quarter

14.8 1.6

Bio8 Mean temperature of the
wettest quarter

13.5 22.5

Bio7 Temperature annual range 6.4 7.5
Bio15 Precipitation seasonality 5.5 6.4
Bio2 Mean diurnal range 4.8 2.9
Bio18 Precipitation of the warmest

quarter
4.2 1.8

Bio14 Precipitation of the driest
month

2.5 2.8

Bio5 Max temperature of the
warmest month

0.1 1.5
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process, the AUC values of training and test were 0.962 ± 0.002
and 0.940 ± 0.021, respectively (Fig. S2b), indicating that the pro-
jected distribution matched the occurrence records. This present
distribution pattern may be related to the palaeoclimate changes
and impacts on distribution. During the Pleistocene glacial period,
temperatures dropped abruptly. The distribution range ofC. oliveri
might have contracted during this time due to failing to adapt to
the cold climate, thus bequeathing the legacy of the current sub-
dued distribution (Fu et al. 2017).

Palaeobotanical data show that Cephalotaxus species were
widely distributed in North America, Europe and Asia during
the Cretaceous and Tertiary periods (Zhang et al. 2019). After
the Quaternary period, the lingering influence of glaciation con-
fined the extant Cephalotaxus species to China, Japan and other
East Asian areas. C. oliveri was decimated by the last glaciation
and survived only in a restricted range, becoming endemic in
China (Fig. S1). After glaciation, it spread out to produce a discon-
tinuous distribution with disjunct patches. Therefore, it could be
assumed that the C. oliveri east of the Wuyi Mountains (in east
China) suffered from local extinction due to the lack of suitable
habitats during the glacial period. In the post-glacial time, the spe-
cies encountered difficulty repopulating the vacated range east of
the Wuyi Mountains due to its inherently poor dispersal (Fu
et al. 2017).

C. oliveri is scarce in natural areas. The female plant does not
bear fruits every year and produces only a fewmature fruits in each
fruiting episode (Zhou et al. 1997). Its seeds are dormant generally
for a year, during which they are prone to decay, loss of viability
and to being eaten by squirrels (Chen et al. 2003). Therefore,
the seed germination rate of C. oliveri under natural conditions
is meagre, and natural regeneration is difficult for the pauperized
and isolated subpopulations (Feng &Wei 2017). Low germination
contributes notably to its restricted distribution.

The model predictions showed that the core suitability areas of
C. oliveri are concentrated in China’s central and south-western
regions, overlapping the subtropical climatic belts (Fig. S2). The
species’ geographical pattern is inextricably linked to environmen-
tal conditions, resulting from long-term species–environment
interactions (Wisz et al. 2013). Many studies have found low tem-
perature to be a critical factor limiting its growth and spread
(Wiens et al. 2010). A temperature below the ecological amplitude

of a species would limit fertilization and embryo development in
seed plants that could induce abortion (García et al. 2000, Ruan
et al. 2012). Thus, low winter temperature restricted the northward
spread of C. oliveri into the northern subtropical belt.

The higher temperatures towards the south side of its range will
not favour its spread. From the predicted results (Fig. 3), most areas in
the southern coastal provinces of China (i.e., Fujian, Guangdong,
Guangxi and Hainan) are not suitable for C. oliveri. This southward
restriction could be explained by the relatively highmean winter tem-
perature above 15°C in the southern subtropical belt. Gymnosperms
have similar floral regulatory genes as angiosperms, suggesting that
general bioclimatic regulation of flowering is common among peren-
nial species (Horvath 2009). Low temperature has a strong effect on
budburst for gymnosperms as well. For instance, eight gymnosperm
species require winter chilling in subtropical China; chilling increased
budburst numbers and budburst percentages for gymnosperm spe-
cies, and a moderate duration of chilling days was needed to increase
this budburst (Pan et al. 2021). However, areas potentially suitable for
C. oliveriwere also found in Yunnan and central Hainan at rather low
latitudes. These sites are located at high altitudes with lower temper-
atures that meet the winter cold treatment requirements.

Previous studies indicated that plant distributions from coastal
to inland areas in a given latitudinal belt often depend on moisture
(Li et al. 2018), and plant establishment and growth are directly
influenced by moisture availability (Cornett et al. 2000).
Therefore, the moisture factor could impose a limiting effect on
the distribution of C. oliveri. The present C. oliveri range has an
average annual precipitation of >1000 mm. Our model predicts
the suitable precipitation of the wettest quarter (summer, which
is also the growing season) to be 500–700 mm (Fig. 2).
Therefore, the distribution of C. oliveri lies in the humid zone.
Comparing the growing-season precipitation and annual precipi-
tation in the species range, the former accounts for more than 50%
of the year. The humid south-east monsoon of the Pacific Ocean
brings abundant precipitation in summer to the C. oliveri distribu-
tion area to satisfy its moisture requirement. This assessment indi-
cates that C. oliveri is a subtropical species that is more sensitive to
low temperatures. The widely available moisture in China’s sub-
tropical latitudes is less limiting than temperature.

In addition to climatic factors, topography, soil, light, interspe-
cific competition and anthropogenic disturbances can also affect

Fig. 1. The relative predictive powers of different environmental variables based on the jackknife test of regularized training gain, test gain and area under the curve (AUC) in
MaxEnt models. Light grey, black and dark grey bars represent three scenarios: without variables, with only one variable and with all variables, respectively.
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species ranges synergistically and antagonistically (Eiserhardt et al.
2011). However, our existing technical and analytical capabilities
may not be able to integrate the whole range of such factors into
an encompassing model to simulate potential species distributions.
Our study could serve as a helpful reference for the potential dis-
tribution and conservation of C. oliveri.

Some measures could be taken to enhance C. oliveri conserva-
tion, as will be discussed in the following subsections.

Ex situ conservation in tandem with in situ conservation

Given the presence of vacant niches in the potential range, conser-
vation work could adopt a combination of defensive and offensive

strategies (Helsen et al. 2011). In situ conservation efforts can be
strengthened in the current suitable range by establishing a pro-
tected area network. The delineation of protection sites could be
determined according to the size and vigour of the local C. oliveri
population. A primary conservation objective is maintaining and
sustaining the natural habitats where the species is flourishing.
Wild population enclaves with high genetic diversity and hotspot
traits can be accorded special attention (Deng et al. 2019). Habitats
classified as excellent in terms of suitability can be prioritized for
protection and guarded against undesirable disturbance and
intrusion. Relatively natural and less disturbed subtropical forest
patches that provide the essential undergrowth niche for the
growth of C. oliveri should be identified as co-conservation targets.

Fig. 2. Mean response curves of the nine environmental variables affecting the probability of Cephalotaxus oliveri distribution (mean of 10 replicate MaxEnt runs (surrounded line
in centre) ± 1 standard deviation).
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Attempts could be made to expand the species distribution
to fill the potential-range areas. The migration and dispersal of
C. oliveri into favourable areas can be facilitated by creating habitat
corridors or stepping stones (Baum et al. 2004). Where biogeo-
graphical barriers such as mountain ranges could not be crossed
spontaneously due to the species’ limited dispersal capability, plan-
tations could be created in the secluded potential range following
translocation and reintroduction (Travers et al. 2021) and rewild-
ing principles and practices (Lorimer et al. 2015). More botanical
gardens in the actual and potential ranges could be selected for ex
situ cultivation (Mounce et al. 2017). Sites with genial biotic and
abiotic conditions amenable to the successful establishment and
reproduction of the species could be identified and nurtured as
natural nurseries and sources of propagules.

As far as is practicable, the protected areas could be planned
according to the equilibrium theory of island biogeography
(MacArthur & Wilson 2016). Their demarcation could follow
some geometric guidelines, being relatively large and round in
shape rather than linear, with a high area-to-edge ratio and a high
degree of connectivity (Margules et al. 1982). All other things being
equal, one large patch is better than a collection of small patches. If
the circumstances only permitted a number of small patches, then
they would be best placed proximal to each other in order to maxi-
mize the chance of successful propagation and gene interflows
amongst the local populations.

Upgrading the study of plant introductions

Plant introduction experiments could be conducted in China’s
central and south-western regions containing the concentrated dis-
tributions of C. oliveri. The species also has ornamental traits that
can be utilized in urban landscape planting to expand the species’
range (Affolter 1997). Studies and trial planting in urban habitats
could select sites that match the species’ ecological requirements.
Different urban stress factors could be evaluated to ascertain the

optimal growth conditions. The impacts of biotic interaction
and interspecific competition such as pests and diseases could
be assessed to improve the survival rate. Abiotic factors such as soil
texture, drainage, available water capacity and microclimatic con-
ditions could also be assessed to identify the optimal combination
of site attributes for its growth.

Reducing human interference and raising public awareness
of conservation

The habitat quality of C. oliveri in its range has been degraded
mainly by extensive overexploitation of the subtropical forests in
the low and middle altitudes (Zhou et al. 1997). Human inroads
have aggravated the drastic range shrinkage that occurred during
the last glaciation. Anthropogenic habitat damage and loss are
critical ongoing causes of population decline and threats to the spe-
cies’ survival. Therefore, scientifically informed statutory protec-
tion accompanied by social and economic measures need to be
developed. The plights of endangered, rare and endemic species
and the needs and means of conservation could be more earnestly
promoted through public education and publicity channels.

A successful conservation programme should encourage local
people’s involvement, participation and engagement. Outside of
designated protected areas, incentives can be offered to villagers
allowing them to tap natural resources in the environs of their
farmlands with constraint and without damaging undergrowth
plants and their forest habitats. The less tangible but highly ben-
eficial and sustainable regulating and provisioning services of for-
ests (Kari & Korhonen-Kurki 2013) could be more effectively
communicated to villagers, and these villagers could be drafted into
co-management teams (Begum et al. 2021). The more conserva-
tion-conscious villagers could be coached to become guardians
or custodians of the local forests (Southammakoth & Craig
2000). Reinforcing a social forest and community forest ownership
mentality could nurture the local conservation culture, allowing

Fig. 3. The potential distribution range of
Cephalotaxus oliveri identified by MaxEnt modelling
under the current climate. The prediction probability
is divided into four suitability categories based on the
computed habitat suitability index.
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self-initiated and sustainable protection to take deep root
(Chandra et al. 2022).

Conclusion

The south-western and central regions of China, including mainly
the provinces of Guizhou, Hunan, Jiangxi, Chongqing, Sichuan
and Hubei, constitute the high-potential core suitability area for
C. oliveri, accounting for 2.12% (20.45 × 104 km2) of China’s total
land area. There are also secondary suitability area and outlier
pockets to accompany this core. In the subtropical spread of the
potential species range, the middle subtropical belt is dominant,
bordered contiguously by two lesser belts to its north and south
(the northern and southern subtropical belts).

Themost critical environmental influences on the potential dis-
tribution ofC. oliveri are themean temperature of the coldest quar-
ter, precipitation of the wettest quarter and annual temperature
range. These variables help us to pinpoint the specific conditions
for the optimal growth of the species. Four suitability grades have
been mapped to provide a working spatial pattern of C. oliveri. In
general, temperature variables were more important than precipi-
tation. The precipitation variables largely reflect the preference of
C. oliveri for the warm and humid climate prevailing in the poten-
tial range rather than being the primary limiting factor of its dis-
tribution. These findings provide ideas that could help us to
improve the management and conservation of C. oliveri.

Supplementary material. For supplementary material accompanying this
paper visit https://doi.org/10.1017/S0376892922000376.
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