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Abstract. We provide an explicit S-adic representation of rank-one subshifts with bounded
spacers and call the subshifts obtained in this way ‘minimal Ferenczi subshifts’. We
aim to show that this approach is very convenient to study the dynamical behavior of
rank-one systems. For instance, we compute their topological rank, the strong and the weak
orbit equivalence class. We observe that they have an induced system that is a Toeplitz
subshift having discrete spectrum. We also characterize continuous and non-continuous
eigenvalues of minimal Ferenczi subshifts.
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1. Introduction
Cutting and stacking transformations have been used extensively for more than 50 years
in ergodic theory to produce a wide variety of dynamical systems which exhibit different
behaviors [Ada98, Bou93, Cha67, CPR22, Cre22, Jun76, Kin86, Kin88, Nad98, Orn72,
Ryz20]. These articles mainly concern the spectral properties, the centralizer and the
disjointness of these transformations.

To understand how simple these systems are, in [ORW82] the notion of (measurable)
rank is introduced to formalize some constructions initiated by Chacon in [Cha67].
Roughly speaking, the measurable rank is the minimal number of ‘stacks’ needed in the
cutting and stacking process. They are defined by two sequences, usually called cutting and
spacer parameters. The systems requiring a unique stack are called rank-one systems and
should be thought as the simplest systems with respect to this notion. It includes periodic
systems and rotations on compact groups [Jun76], but also many other systems that have
received a lot of attention since the late 1960s, as ‘almost all’ interval exchanges [Fer97,
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Vee84]. They have been mainly studied from a spectral and probabilistic point of view, and
served to create examples and counterexamples in ergodic theory. For instance, the Chacon
transformation [Cha67] is one of the first known examples of a measurable transformation
which is weakly mixing but not mixing.

Ferenczi [Fer96, Fer97] proposed a different perspective representing these systems
as subshifts, whereas they have a purely measure-theoretic and geometric origin. This
combinatorial and topological model, that can be traced back to [Kal84], imposed a
different framework and led to many different questions. For instance, these subshifts
are known to have zero topological entropy. Moreover, they have non-superlinear sym-
bolic complexity [Fer96, Proposition 2], but they may have peaks with any prescribed
sub-exponential growth [Fer96, Proposition 3]. We refer to [AFP17, GH14, GH16a,
GH16b, GH21, GZ19, GZ20] for recent results about the combinatorial and topological
models of rank-one systems.

For minimal systems defined on Cantor spaces, there exists a different and
well-established notion of rank, called the topological rank [BDM10, BKMS13, DM08,
DP22, Dur10]. The class of systems of topological rank one coincides with the class of
odometers, so we decided to refer to the symbolic construction of rank-one systems as
Ferenczi subshifts to avoid any misleading definition. Moreover, with Ferenczi being the
one that popularized this class of subshifts [Fer96, Fer97], we came naturally to coin his
name to them.

This article is devoted to the study of minimal Ferenczi subshifts, that is, those defined
by a uniformly bounded sequence of spacers. We attempt to create a comprehensive
classification for minimal Ferenczi subshifts according to some dynamical properties that
we find relevant. More specifically, we want to compute their topological rank and to
describe their (strong and weak) orbit equivalence class, to describe their (continuous and
measurable) spectrum, to explore its mixing properties and to compute their automorphism
group.

We begin by making the crucial observation that a subshift is a minimal Ferenczi
subshift if and only if it is an S-adic subshift generated by a particular directive sequence
of finite alphabet rank. The family of S-adic subshifts, introduced by Ferenczi in [Fer96],
is a rich family that has been studied intensively and many different behaviors have been
proposed [BD14, BSTY19, DDMP21, Dur00, Ler14].

It is particularly desirable to have primitive, proper and recognizable directive sequences
as this allows, without effort, to define a nested sequence of Kakutani–Rokhlin partitions
in towers [DL12]. This is a central tool for the study of the dynamical properties. For
instance, systems admitting such partitions with a uniform bound for the number of
towers are of zero topological entropy [Dur10], have an explicit description of their
ergodic invariant probability measures [BKMS13] and there exist necessary and sufficient
conditions for a complex number to be a continuous or measurable eigenvalue [BDM10,
DFM19].

The directive sequence of morphisms we obtain for minimal Ferenczi subshifts has
some nice properties, however they are not proper. A recent result of Espinoza [Esp22]
shows that this directive sequence can be chosen to be proper, but his general method
deteriorates the nice structure of the morphisms we obtained and considerably increases
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the size of the alphabets. Nevertheless, we can perform a standard trick which guarantees
properness, retaining a nice structure of the morphisms and the alphabets.

A direct consequence of the nice structure of the morphisms generating a minimal
Ferenczi subshift is that we can compute the topological rank in terms of the cutting and
spacer parameters, we recover the well-known fact that they are uniquely ergodic and we
show that they have a Toeplitz subshift as an induced system. Moreover, we show that this
induced system is mean equicontinuous and, thus, has discrete spectrum [DG16, GRJY21,
LTY15].

We characterize the exact finite rank of the directive sequences for minimal Ferenczi
subshifts, that is, when all towers decomposing the system have a measure bounded away
from zero at each level [BKMS13]. This has an incidence in the study of measurable
eigenvalues, as we give a general necessary condition for a complex number to be a
measurable eigenvalue for S-adic subshifts. We believe this result has its own interest for
further studies. It extends to subshifts what it is often called the Veech criterion for interval
exchange transformations [Vee84].

In order to understand the (strong and weak) orbit equivalence class of minimal Ferenczi
subshifts and their infinitesimals (in the spirit of [GPS95]), we provide a one-to-one
correspondence between the orbit equivalence classes and a family of dimension groups,
that we call of Ferenczi type.

We then turn to the study of eigenvalues of minimal Ferenczi subshifts. The group
of measurable eigenvalues of a given system gives useful information, as it defines the
Kronecker factor that comes naturally with the result of Halmos and von Neumann
[HN42], and also allows to study the weakly mixing property. In the topological dynamics
counterpart, the group of continuous eigenvalues allows us to understand the maximal
equicontinuous factor (in the minimal case) and the topological weakly mixing property.

In general, it is not true that measurable eigenvalues are continuous. Measurable
eigenvalues coincide with continuous ones for the class of primitive substitution systems
[Hos86]. However, there exist linearly recurrent minimal Cantor systems with measurable
and non-continuous eigenvalues [BDM05].

In this article, we adopt the general framework of [BDM10, DFM19] to study
eigenvalues of minimal Ferenczi subshifts. This allows to give an alternative proof
about the description of continuous eigenvalues [GH16a, GZ19] and to show that all
measurable eigenvalues are continuous in the exact finite-rank case, which extends a result
in [GH16a]. We also provide some realization results in the non-exact finite-rank case with
non-continuous eigenvalues.

We also explore the mixing properties of minimal Ferenczi subshifts. With this purpose,
inspired by results in [KSS05], we give a general necessary condition for topological
mixing of minimal subshifts defined on a binary alphabet. This gives an alternative proof
to the fact that minimal Ferenczi subshifts are not topologically mixing [GZ19].

Finally, we show that subshifts in this family have a unique asymptotic class, which by a
standard argument implies that the automorphism group is trivial. This gives an alternative
proof of a result in [GH16b].

We expect that this S-adic approach is convenient to investigate some other relevant
questions in topological and measurable dynamics of subshifts.
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1.1. Organization. In the next section we give the basic background in topological
dynamics and S-adic subshifts needed in this article. We characterize minimal Ferenczi
subshifts as those S-adic subshifts generated by particular directive sequences in §3.
Section 4 is devoted to the study of these subshifts from the topological dynamics
viewpoint. We compute the topological rank and the dimension group of minimal Ferenczi
subshifts and their strong and weak orbit equivalence classes. Then, we study the
continuous eigenvalues, the maximal equicontinuous factor and the topological mixing of
minimal Ferenczi subshifts. In the last part of the section, we show that minimal Ferenczi
subshifts have a unique asymptotic class and a trivial automorphism group.

We study the measurable eigenvalues of minimal Ferenczi subshifts in §5. We illustrate
these results with concrete examples.

In this article, we let N and Z denote the set of non-negative integers and the set of
integers numbers, respectively. For a finite set A, we also denote by RA+ (respectively, ZA+ )
the set of non-negative vectors (respectively, non-negative integer vectors) indexed by A.
Similarly, we denote by RA

>0 (respectively, ZA
>0) to the set of positive vectors (respectively,

positive integer vectors). For a vector v in RA the Euclidean norm of v is denoted by ||v||
and we write |||v||| = infw∈ZA ||v − w||.

2. Preliminaries
2.1. Basics in topological dynamics and eigenvalues. A topological dynamical sys-
tem (or just a system) is a compact metric space X together with a homeomorphism
T : X→ X. We use the notation (X, T ). If X is a Cantor space (i.e., X has a countable
basis of clopen sets and it has no isolated points) we say it is a Cantor system. The system
(X, T ) is minimal if for every point x ∈ X the orbit {T nx : n ∈ Z} is dense in X.

Let (X, T ) and (X′, T ′) be two topological dynamical systems. We say that (X′, T ′) is
a topological factor of (X, T ) if there exists a continuous and surjective map φ : X→ X′
such that

φ ◦ T = T ′ ◦ φ. (1)

In this case, we say that φ a factor map. If, in addition, the map φ in (1) is a
homeomorphism, we say that it is a topological conjugacy and that (X, T ) and (X′, T ′)
are topologically conjugate.

Let (X, T ) be a minimal Cantor system and U ⊆ X be a non-empty clopen set. We can
define the return time function rU : X→ N by

rU (x) = inf{n > 0 : T nx ∈ U}, x ∈ X.

It is easy to see that the map rU is locally constant and, hence, continuous. The induced
map TU : U → U is defined by

TU(x) = T rU (x)x, x ∈ U .

We have that TU : U → U is a homeomorphism and that (U , TU) is a minimal Cantor
system. We call it the induced system of (X, T ) on U.
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We say that a complex number λ is a continuous eigenvalue of the system (X, T )
if there exists a continuous function f : X→ C, f �= 0, such that f ◦ T = λf ; f is
called a continuous eigenfunction associated with λ. The system (X, T ) is topologically
weakly-mixing if it has no non-constant continuous eigenfunctions.

Let μ be a T-invariant probability measure defined on the Borel σ -algebra of X, that
is, μ(T −1(A)) = μ(A) for every measurable set A ⊆ X. We say that a complex number
λ is a measurable eigenvalue of the system (X, T ) with respect to μ if there exists
f ∈ L2(X, μ), f �= 0, such that f ◦ T = λf ; f is called a measurable eigenfunction
associated with λ. The system is weakly mixing for μ if it has no non-constant measurable
eigenfunctions.

If the system (X, T ) is minimal (respectively, if μ is ergodic for (X, T )), then every
continuous eigenvalue (respectively, measurable eigenvalue with respect toμ) has modulus
one and every continuous eigenfunction (respectively, measurable eigenfunction) has a
constant modulus on X (respectively, a constant modulus μ-almost everywhere on X).

Whenever the measure μ is ergodic for (X, T ) or when (X, T ) is minimal, we write
λ = exp(2πiα) with α ∈ [0, 1) to denote eigenvalues of the system. If λ = exp(2πiα) is
an eigenvalue of the system with α an irrational number (respectively, rational number),
we say that λ is an irrational eigenvalue (respectively, rational eigenvalue).

2.2. Basics in symbolic dynamics

2.2.1. Subshifts. Let A be a finite set that we call alphabet. Elements in A are called
letters or symbols. The number of letters of A is denoted by |A|. The set of finite sequences
or words of length � ∈ N with letters in A is denoted by A� and the set of two-sided
sequences (xn)n∈Z in A is denoted by AZ. A word w = w0w1 . . . w�−1 ∈ A� can be seen
as an element of the free monoid A∗ endowed with the operation of concatenation (whose
neutral element is ε, the empty word). The integer � is the length of the word w and is
denoted by |w| = �; the length of the empty word is zero. A word v is a power of a word u
if v = un for some n ∈ N.

For finite words p and s in A∗, we say that they are a prefix and a suffix,
respectively, of the word ps. For x ∈ AZ and integers N > n we define the word
x[n,N) = xnxn+1 . . . xN−1. For a non-empty word w ∈ A∗ and a point x ∈ AZ, we say
that w occurs in x if there exists n ∈ Z such that xnxn+1 . . . xn+|w|−1 = w. In this case, we
say that the index n is an occurrence of w in x. We use the same notion for finite non-empty
words x. We say that a non-empty word w = w0w1 . . . w�−1 ∈ A∗ starts (respectively,
ends) with a non-empty word u ∈ A∗ if u = w0 . . . wi−1 for some i ≤ � (respectively,
u = wj . . . w�−1 for some j ≥ 0).

The shift map S : AZ→ AZ is defined by S((xn)n∈Z) = (xn+1)n∈Z. A subshift is a
topological dynamical system (X, S) where X is a closed and S-invariant subset of AZ.
Here, we consider the product topology on AZ. Classically, one identifies (X, S) with X,
so one says that X itself is a subshift. When we say that a sequence x in a subshift is
aperiodic, we implicitly mean that x is aperiodic for the action of the shift.

Let (X, S) be a subshift. The language of (X, S) is the set L(X) containing all words
w ∈ A∗ such that w = x[m,m+|w|) for some x = (xn)n∈Z ∈ X and m ∈ Z. In this case, we
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also say that w is a factor (also called subword) of x. We denote by L�(X) the set of words
of length � in L(X). Given x ∈ X, the language L(x) is the set of all words that occur in
x. As before, we define L�(x). For two words u, v ∈ L(X), the cylinder set [u.v] is the set
{x ∈ X : x[−|u|,|v|) = uv}. When u is the empty word we only write [v], erasing the dot.
We remark that cylinder sets are clopen sets and they form a base for the topology of the
subshift.

2.2.2. Morphisms. Let A and B be finite alphabets and τ : A∗ → B∗ be a morphism.
We say that τ is erasing whenever there exists a letter a ∈ A such that τ(a) is the empty
word. Otherwise, we say it is non-erasing. When the morphism τ is non-erasing, it extends
naturally to a map from AZ to BZ by concatenation (we apply τ to positive and negative
coordinates separately and we concatenate the results at coordinate zero). We continue
to call this map τ . We observe that any map τ : A→ B∗ can be naturally extended to a
morphism (that we also denote by τ ) from A∗ to B∗ by concatenation.

The composition matrix of a morphism τ : A∗ → B∗ is given for each a ∈ A and b ∈ B
by Mτ(b, a) = |τ(a)|b, where |τ(a)|b counts the number of occurrences of the letter b in
the word τ(a). The morphism τ is said to be positive ifMτ has positive entries and proper
if there exist p, s ∈ B such that for all a ∈ A the word τ(a) starts with p and ends with s.

The minimum and maximal lengths of τ are, respectively, the numbers

〈τ 〉 = min
a∈A
|τ(a)| and |τ | = max

a∈A
|τ(a)|.

We say that a morphism τ is of constant length if 〈τ 〉 = |τ |. Observe that if τ : A∗ → B∗
and τ ′ : B∗ → C∗ are two constant length morphisms, then τ ′ ◦ τ is also of constant length
and

|τ ′ ◦ τ | = |τ ′||τ |. (2)

Following [BSTY19], a morphism τ : A∗ → B∗ is left permutative (respectively, right
permutative) if the first (respectively, last) letters of τ(a) and τ(b) are different, for all dis-
tinct letters a, b ∈ A. Two morphisms τ , τ̃ : A∗ → B∗ are said to be rotationally conjugate
if there is a word w ∈ B∗ such that τ(a)w = wτ̃(a) for all a ∈ A or τ̃ (a)w = wτ(a) for
all a ∈ A.

2.2.3. S-adic subshifts. We recall the definition of S-adic subshifts as stated in
[BSTY19]. A directive sequence τ = (τn : A∗n+1 → A∗n)n≥0 is a sequence of non-erasing
morphisms. A slightly more general definition is given in [DP22] including the case
of erasing morphisms. When all morphisms τn for n ≥ 0 are proper, we say that τ is
proper. For 0 ≤ n ≤ N , we denote by τ[n,N) the morphism τn ◦ τn+1 ◦ · · · ◦ τN−1, where
τ[n,n) : A∗n→ A∗n is the identity map for each n ≥ 0. We say τ is everywhere growing if
〈τ[0,n)〉 → +∞ as n→+∞ and say that it is primitive if for any n ∈ N there existsN > n

such thatMτ[n,N) has positive entries, that is, for every a ∈ AN the word τ[n,N)(a) contains
all letters in An. Observe that primitivity implies everywhere growing. If τ is primitive,
then the subshift (Xτ , S) is minimal (see, for instance, [DP22, Proposition 6.4.5]).
However, there are minimal subshifts that are generated by non-everywhere-growing
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directive sequences, as for the Chacon subshift generated by a constant directive sequence
given by the morphism 0 �→ 0010, 1 �→ 1.

For n ∈ N, the language L(n)(τ ) of level n associated with τ is defined by

L(n)(τ ) = {w ∈ A∗n : w occurs in τ[n,N)(a) for some a ∈ AN and N > n}

and letX(n)τ be the set of points x ∈ AZ
n such that L(x) ⊆ L(n)(τ ). This set clearly defines a

subshift that we call the subshift generated by L(n)(τ ). We set Xτ = X(0)τ and call (Xτ , S)
or Xτ the S-adic subshift generated by the directive sequence τ .

A contraction of τ = (τn : A∗n+1 → A∗n)n≥0 is a directive sequence of the form

τ̃ = (̃τk = τ[nk ,nk+1) : A∗nk+1
→ A∗nk )k≥0,

where the sequence (nk)k≥0 is such that n0 = 0 and nk < nk+1 for all k ≥ 0. Observe that
any contraction of τ generates the same S-adic subshift Xτ .

We say that a directive sequence τ = (τn : A∗n+1 → A∗n)n≥0 is invertible if the linear
map Mτn : RAn → RAn+1 (acting on row vectors) is invertible for all n ≥ 0. Observe that
this implies that the sequence (|An|)n≥0 is constant.

The following proposition generalizes [BCBD+21, Lemma 3.3]. The proof is similar
and we include it here for the sake of completeness.

PROPOSITION 2.1. Let τ = (τn : A∗n+1 → A∗n)n≥0 be a primitive and invertible directive
sequence. Then (Xτ , S) is minimal and aperiodic.

Proof. It is enough to show that (Xτ , S) is aperiodic. By contradiction, define p ∈ N to
be the smallest possible period among all periodic points in Xτ .

Let y = . . . uu.uu . . . be a periodic point in Xτ , where |u| = p. Since τ is primitive,
there exists n ∈ N such that 〈τ[0,n)〉 ≥ p. Without loss of generality, there exists x ∈ AZ

n

such that y = τ[0,n)(x). Furthermore, because τ is primitive we can assume that every
letter of An occurs in x.

If the word τ[0,n)(x0) is not a power of u, then there exists a non-empty prefix v
(respectively, non-empty suffix w) of u such that u = vw, τ[0,n)(x0) ends with v and
τ[0,n)(x1) starts with w. The word τ[0,n)(x1) starts with u, so there exists a suffix v′ of
u such that u = wv′. However, because y = . . . uu.uu . . ., the word v′ is also a prefix of
u with |v′| = |v|, so v = v′. The Fine–Wilf theorem then implies that v and w are powers
of a same word, contradicting the definition of p.

This shows that τ[0,n)(x0) = up0 for some p0 ∈ N and, inductively, for each m ∈ Z

there exists pm ∈ N such that τ[0,n)(xm) = upm . In particular, for each a ∈ An there exists
pa ∈ N such that τ[0,n)(a) = upa . Therefore, the columns of Mτ[0,n) are multiples of the
column vector (|u|a)a∈A0 . This contradicts the fact that the linear map given by Mτ[0,n) is
invertible and finishes the proof.

2.2.4. Recognizability. Let τ : A∗ → B∗ be a non-erasing morphism and X ⊆ AZ be a
subshift. For x ∈ X and k ∈ N with 0 ≤ k < |τ(x0)|, the cutting points of the pair (k, x)
are defined as follows. If � ≥ 0, we define the �th cutting point of (k, x) as
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C�τ (k, x) = |τ(x[0,�))| − k.

Similarly, if � < 0 the �th cutting point of (k, x) is C�τ (k, x) = −|τ(x[�,0))| − k. Define
C+τ (k, x) = {C�τ (k, x) : � > 0}.

If y = Skτ(x) with x ∈ X and k ∈ N, 0 ≤ k < |τ(x0)|, we say that (k, x) is a centered
τ -representation of y. The centered τ -representation (k, x) is in X if x belongs to X. The
morphism τ is recognizable in X (respectively, recognizable in X for aperiodic points)
if any point y ∈ BZ (respectively, any aperiodic point y ∈ BZ) has at most one centered
τ -representation in X. If τ is recognizable in AZ (for aperiodic points), we say that τ is
fully recognizable (for aperiodic points).

In what follows, we use the following results [BSTY19, Theorem 3.1, Lemma 3.5].

PROPOSITION 2.2. Let τ : A∗ → B∗ be a non-erasing morphism. Assume that τ is (rota-
tionally conjugate to) a left or right permutative morphism. Then τ is fully recognizable
for aperiodic points.

PROPOSITION 2.3. Let σ : A∗ → B∗ and τ : B∗ → C∗ be two non-erasing morphisms,
X ⊆ AZ be a subshift and Y =⋃

k∈Z Skσ(X). If σ is recognizable in X for aperiodic
points and τ is recognizable in Y for aperiodic points, then τ ◦ σ is recognizable in X for
aperiodic points.

We also need the following straightforward lemma [DP22, Proposition 1.4.30].

LEMMA 2.4. Let τ : A∗ → B∗ be a non-erasing morphism and X ⊆ AZ be a minimal
and aperiodic subshift. Suppose that τ is recognizable in X and let Y =⋃

k∈Z Skτ(X).
Then (X, S) is topologically conjugate to the induced system (τ (X), Sτ(X)) of (Y , S) on
τ(X).

2.2.5. Recognizability for sequences of morphisms. Following [BSTY19], a directive
sequence τ = (τn : A∗n+1 → A∗n)n≥0 is said to be recognizable at level n if the morphism

τn is recognizable in X(n+1)
τ . We say that the directive sequence τ is recognizable if it is

recognizable at level n for each n ≥ 0.
We have that τ is recognizable if and only if for all 0 ≤ n < N and any point

y ∈ X(n)τ there is a unique couple (k, x) with x ∈ X(N)τ and 0 ≤ k < |τ[n,N)(x0)| such
that y = Skτ[n,N)(x). This is the content of [BSTY19, Lemmas 3.5 and 4.2]. Indeed, τ

is recognizable if and only if for all n ≥ 0 and any point y ∈ Xτ there is a unique couple
(k, x) with x ∈ X(n)τ and 0 ≤ k < |τ[0,n)(x0)| such that y = Skτ[0,n)(x).

Lemma 2.4 implies the following.

COROLLARY 2.5. Let τ = (τn : A∗n+1 → A∗n)n≥0 be a recognizable directive sequence
and let τ ′ = (τn+1 : A∗n+2 → A∗n+1)n≥0 be the shifted directive sequence. Suppose that
the subshift (Xτ , S) is minimal and aperiodic. Then (Xτ ′ , S) is topologically conjugate to
the induced system (τ0(Xτ ′), Sτ0(Xτ ′ )) of (Xτ , S) on τ0(Xτ ′).
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2.3. Kakutani–Rokhlin partitions. Let (X, T ) be a minimal Cantor system.

2.3.1. CKR partitions of minimal Cantor systems. A clopen Kakutani–Rokhlin (CKR)
partition T of (X, T ) is a partition of X of the form

T = {T kB(a) : a ∈ A(T ), 0 ≤ k < h(a)},
where A(T ) is a non-empty finite alphabet, the value h(a) is a positive integer and B(a)
is a clopen set for all a ∈ A(T ). Observe that⋃

a∈A(T )

T h(a)B(a) =
⋃

a∈A(T )

B(a).

The base of T is the set B(T ) =⋃
a∈A(T ) B(a). The set T (a) =⋃

0≤k<h(a) T kB(a) is
called the tower indexed by a ∈ A(T ) of T with base B(a) and height h(a).

Let

T n = {T kBn(a) : a ∈ A(T n), 0 ≤ k < hn(a)}, n ≥ 0

be a sequence of CKR partitions of (X, T ). It is nested if for any n ≥ 0:
(KR1) B(T n+1) ⊆ B(T n);
(KR2) T n � T n+1, that is, for every A ∈ T n+1 there exists B ∈ T n such that A ⊆ B;
(KR3)

⋂
n≥0 B(T n) = {x} for some point x ∈ X; and

(KR4) the atoms of
⋃
n≥0 T n generate the topology of X.

We remark that nested sequences always exist [HPS92, Theorem 4.2].
For each n ≥ 0, the incidence matrix Mn between the partitions T n+1 and T n is given

for each a ∈ A(T n) and b ∈ A(T n+1) by

Mn(a, b) = #{0 ≤ k < hn+1(b) : T kBn+1(b) ⊆ Bn(a)}. (3)

For n ≥ 0 let hn be the row vector called height vector and defined by

hn = (hn(a))a∈A(T n).

We define Pm,n = MmMm+1 . . . Mn−1 for 0 ≤ m < n. Observe that Pn,n+1 = Mn. By
means of a simple induction argument, we have hn = hmPm,n and

Pm,n(a, b) = #{0 ≤ k < hn(b) : T kBn(b) ⊆ Bm(a)}, (4)

a ∈ A(T m), b ∈ A(T n), 0 ≤ m < n.
The topological rank of (X, T ) is the value

rank(X, T ) = inf
nested sequence (T n)n≥0

of CKR partitions of (X,T )

lim inf
n→+∞ |A(T n)|. (5)

Roughly speaking, the topological rank of (X, T ) is the smallest number of CKR towers
needed to describe (X, T ). The topological rank is invariant under topological conjugacy.
See [BDM10, DM08] for more details.

2.3.2. Invariant measures through CKR partitions. Let (T n)n≥0 be a nested sequence of
CKR partitions. Any T-invariant probability measure μ of (X, T ) is uniquely determined
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by the values it assigns to atoms of the partitions, hence to the bases Bn(a), a ∈ A(T n)

and n ≥ 0.
For n ≥ 0 let μn be the column vector called measure vector and defined by

μn = (μn(a))a∈A(T n), where μn(a) = μ(Bn(a)).
Therefore, the measure μ is completely determined by the sequence of measure vectors
(μn)n≥0. As μ is a probability measure, we have

μ(T n(a)) = hn(a)μn(a) and
∑

a∈A(T n)

μ(T n(a)) = 1. (6)

In addition, by (4) we have

μm = Pm,nμn, 0 ≤ m < n. (7)

2.3.3. CKR partitions of S-adic subshifts. Let τ = (τn : A∗n+1 → A∗n)n≥0 be a prim-
itive, proper and recognizable directive sequence which generates the S-adic subshift
(Xτ , S). Define the sequence (T n)n≥0 as follows:

T n = {Skτ[0,n)([a]) : a ∈ An, 0 ≤ k < |τ[0,n)(a)|}, n ≥ 0. (8)

The following result proved in [DL12, Proposition 2.2] shows that (T n)n≥0 defines a
nested sequence of CKR partitions. We include a proof for the sake of completeness.

PROPOSITION 2.6. The sequence (T n)n≥0 is a nested sequence of CKR partitions of
(Xτ , S). Moreover, for each n ≥ 0 the incidence matrix Mn between the partitions T n+1

and T n coincides with the composition matrix Mτn of the morphism τn:

Mn = Mτn .

Proof. As τ is recognizable, T n is a CKR partition ofXτ for each n ≥ 0. Observe that the
tower T n(a) has base Bn(a) = τ[0,n)([a]) for a ∈ An. Clearly we have B(T n+1) ⊆ B(T n)

for n ≥ 0.

Claim 2.6.1. We claim that T n � T n+1.

Indeed, let Skτ[0,n+1)([a]) be an atom of T n+1, a ∈ An+1, 0 ≤ k < |τ[0,n+1)(a)|.
Let τn(a) = b0b1 . . . bi−1 with bj ∈ An, 0 ≤ j < i. Then, there exists j ∈ [0, i − 1)
satisfying

|τ[0,n)(b0b1 . . . bj )| ≤ k < |τ[0,n)(b0b1 . . . bj+1)|.
We deduce that if k′ = |τ[0,n)(b0b1 . . . bj )|, then Skτ[0,n+1)([a]) ⊆ Sk−k′τ[0,n)([bj+1])
with 0 ≤ k − k′ < |τ[0,n)(bj+1)|. This proves the claim.

Claim 2.6.2. The atoms of
⋃
n≥0 T n generate the topology of Xτ .

Indeed, let n ≥ 1, a ∈ An, 0 ≤ k < |τ[0,n)(a)| and � be a non-negative integer. As
τn is proper, there exist two letters pn and sn in An such that τn(a) starts with pn

and ends with sn for all a ∈ An+1 and n ≥ 0. As τ is primitive, there exists N ∈ N
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such that if n ≥ N then 〈τ[0,n−1)〉 ≥ �. Let x′, y′ ∈ τ[0,n)([a]), un = τ[0,n−1)(sn−1) and
vn = τ[0,n)(a)τ[0,n−1)(pn−1). We have

x′[−|un|,|vn|) = y′[−|un|,|vn|) = unvn,

so that x′[−�,�+k] = y′[−�,�+k]. If x, y belong to Skτ[0,n)([a]), n ≥ N , then x[−�−k,�] =
y[−�−k,�] and, in particular, x[−�,�] = y[−�,�]. Therefore, diam(Skτ[0,n)([a]))→ 0 as
n→+∞. This proves the claim. As the bases (B(T n))n≥0 are nested, they converge
to some point. This finishes the proof of the first statement.

The second statement follows easily from the recognizability of τ .

We remark that the height vectors (hn)n≥0 of (T n)n≥0 defined by (8) satisfy

hn(a) = |τ[0,n)(a)|, a ∈ An, n ≥ 0. (9)

2.4. Dimension groups. In this section we recall the basic on dimension groups and
state the main results that we use throughout this article. We refer to [DP22, GPS95] for
more complete references.

2.4.1. Direct limits. Let (Gn)n≥0 be a sequence of abelian groups and let in+1,n : Gn→
Gn+1 for each n ≥ 0 be a morphism. Define the subgroups
 and
0 of the direct product∏
n≥0 Gn by


 = {(gn)n≥0 ∈∏
n≥0 Gn : gn+1 = in+1,n(gn) for every large enough n}

and


0 = {(gn)n≥0 ∈∏
n≥0 Gn : gn = 0 for every large enough n}.

Let G = 
/
0 be the quotient group and π : 
→ G be the natural projection. The
group G is called the direct limit of (Gn)n≥0 and we write G = lim−→ Gn. If g ∈ Gn, then
all sequences (gk)k≥0 such that gn = g and gk+1 = ik+1,k(gk) for all k ≥ n belong to 

and have the same projection in G, denoted by in(g). This defines a group morphism
in : Gn→ G, which we call the natural morphism from Gn to G. For 0 ≤ m < n define

in,m = in−1,n ◦ in,n+1 ◦ · · · ◦ im+1,m.

We have im = in ◦ in,m and G =⋃
n≥0 Im in.

We can also define direct limits of vector spaces. Let K be a field. For each n ≥ 0, let
Vn be a vector space over K and in+1,n : Vn→ Vn+1 be a linear map. The direct limit
V = lim−→ Vn is the vector space over K, where the group structure on V is that given by the
direct limit of the abelian groups Vn and the scalar multiplication is given by pointwise
scalar multiplication on each coordinate.

2.4.2. Orbit equivalence. Two minimal Cantor systems (X, T ) and (X′, T ′) are orbit
equivalent if there exists a homeomorphism � : X→ X′ which sends orbits onto orbits,
that is,

�({T nx : n ∈ Z}) = {(T ′)n ◦�(x) : n ∈ Z}, x ∈ X.
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This implies that there exist two maps α : X→ Z and β : X′ → Z, uniquely defined by
aperiodicity, such that

� ◦ T (x) = (T ′)α(x) ◦�(x) and � ◦ T β(x)(x) = T ′ ◦�(x), x ∈ X.

The minimal Cantor systems (X, T ) and (X′, T ′) are strongly orbit equivalent if α and β
both have at most one point of discontinuity.

2.4.3. Dimension groups of minimal Cantor systems. Denote by C(X, Z) (respectively,
C(X, N)) the group (respectively, monoid) of continuous functions from X to Z (respec-
tively, N) with the addition operation. Consider the map ∂ : C(X, Z)→ C(X, Z) defined
by ∂f = f ◦ T − f .

A map f is called a coboundary if there exists g ∈ C(X, Z) such that f = ∂g. Two
maps f , f ′ ∈ C(X, Z) are said to be cohomologous if f − f ′ is a coboundary.

Define the quotient group H(X, T ) = C(X, Z)/∂C(X, Z). Let [f ] be the class of
f ∈ C(X, Z) in H(X, T ) and π : C(X, Z)→ H(X, T ) be the projection map. Define
H+(X, T ) = π(C(X, N)) and denote by 1X the constant one valued function.

Consider the triple

K0(X, T ) = (H(X, T ), H+(X, T ), [1X]).

It is an ordered group with order unit [1X]. As (X, T ) is minimal, it is a dimension group.
See [DP22, GPS95] for the definitions and more details. We call it the dimension group
of (X, T ).

It is classical to observe that if (X, T ) is topologically conjugate to (X′, T ′), then the
ordered groups with order units K0(X, T ) and K0(X′, T ′) are unital order isomorphic,
i.e., there exists a group morphism δ : H(X, T )→ H(X′, T ′) such that δ(H+(X, T )) =
H+(X′, T ′) and δ([1X]) = [1X′].

Denote by M(X, T ) the set of invariant probability measures of (X, T ). We define the
set of infinitesimals of H(X, T ) as

Inf H(X, T ) =
{

[f ] ∈ H(X, T ) :
∫
f dμ = 0 for all μ ∈M(X, T )

}
.

We have that H(X, T )/ Inf H(X, T ) with the induced order is also a dimension group.
We denote it by K0(X, T )/ Inf K0(X, T ).

The dimension groups K0(X, T ) and K0(X, T )/ Inf K0(X, T ) characterize strong
orbit equivalence and orbit equivalence, respectively [GPS95].

Another description of the dimension group K0(X, T ) is as follows. Let (T n)n≥0 be a
nested sequence of CKR partitions of (X, T ) as defined in §2.3. Let (A(T n))n≥0, (hn)n≥0

and (Mn)n≥0 be the associated sequences of alphabets, height vectors and incidence
matrices, respectively.

For n ≥ 0 we consider ZA(T n) as an ordered group of row vectors with the usual order.
Define the sequence of ordered groups with order units

Gn = (ZA(T n), ZA(T n)+ , hn), n ≥ 0.
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Let G = lim−→ Gn be the direct limit of the groups Gn with respect to the morphisms
Mn : ZA(T n)→ ZA(T n+1) given by the incidence matrix Mn (acting on row vectors).
Let G+ be the projection in G of the set of points (xn)n≥0 ∈∏

n≥0 ZA(T n) for which

there exists N ∈ N such that xN ∈ Z
A(T N)+ and xk+1 = xkMk , k ≥ N . Denote by u the

projection in G of the sequence (hn)n≥0.
The tuple K = (G, G+, u) is a dimension group. The introduction of this dimension

group is motivated by the following proposition [DP22, Theorem 5.3.6].

PROPOSITION 2.7. Let (X, T ) be a minimal Cantor system and let K be the dimension
group associated to a nested sequence of CKR partitions of (X, T ). Then, the dimension
group K0(X, T ) is unital order isomorphic to K.

2.4.4. Dimension groups of S-adic subshifts. Let τ = (τn : A∗n+1 → A∗n)n≥0 be a
primitive, proper and recognizable directive sequence. Suppose that (Xτ , S) is aperiodic.
Let (T n)n≥0 be the sequence of CKR partitions given in (8) and K be the dimension
group associated to it. Recall that, by Proposition 2.6, the incidence matrix Mn between
the partitions T n+1 and T n coincide with the composition matrixMτn of the morphism τn.

We call K the dimension group of τ . By Proposition 2.7, the dimension group of (Xτ , S)
is unital order isomorphic to K.

In the case where all the linear maps Mτn , n ≥ 1 are invertible, it is easy to check from
the definition that the dimension groupK0(Xτ , S) is unital order isomorphic to (G, G+, u),
where

G = {x ∈ RA1 : xMτ1Mτ2 . . . Mτn ∈ ZAn+1 for large enough n},
G+ = {x ∈ RA1 : xMτ1Mτ2 . . . Mτn ∈ Z

An+1+ for large enough n},
and u = (|τ0(a)|)a∈A1 ∈ RA1 .

3. S-adic representation of minimal Ferenczi subshifts
3.1. Ferenczi subshifts. Following [Fer96, Fer97], we consider sequences of
non-negative integers (qn)n≥0 and (an,i : n ≥ 0, 0 ≤ i < qn), which we call cutting and
spacers parameters, respectively. These parameters define a sequence of generating words
W = (wn)n≥0 over the alphabet {0, 1} inductively by

w0 = 0 and wn+1 = wn1an,0wn1an,1 . . . wn1an,qn−1wn, n ≥ 0. (10)

Observe that

|wn+1| = (qn + 1)|wn| +
qn−1∑
i=0

an,i , n ≥ 0. (11)

The sequence W allows the construction of the subspace of {0, 1}Z given by

XW = {x ∈ {0, 1}Z : every factor of x is a factor of wn for some n ≥ 0}
and a one-sided sequence x ∈ {0, 1}N by

x[0,|wn|) = wn, n ≥ 0. (12)
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We define

Qm,n =
n−1∏
j=m

(qj + 1), 0 ≤ m < n. (13)

A contraction of W is a sequence of generating words of the form W̃ = (wnk )k≥0, where
the sequence (nk)k≥0 is such that n0 = 0 and nk < nk+1 for all k ≥ 0. Observe that if W̃
is a contraction of W , then the generating words of W̃ satisfy a relation of type (10) with
new parameters (̃qk : k ≥ 0) such that

q̃k + 1 = Qnk ,nk+1 , k ≥ 0. (14)

Moreover, it is easy to check that XW̃ = XW .
The pair (XW , S) is a subshift, which we call the Ferenczi subshift associated to W .

It is minimal if the sequence (an,i : n ≥ 0, 0 ≤ i < qn) is bounded. If such a sequence
is otherwise unbounded, then the two-sided sequence 1∞ given by 1∞n = 1 for all n ∈ Z

belongs to XW and XW contains at least two points, in particular the subshift (XW , S)
is not minimal. Moreover, in the minimal case, XW is finite if and only if the sequence x
given by (12) is periodic. See [GH16a, §2].

In the next section we prove that minimal Ferenczi subshifts are S-adic subshifts. This
is summarized in Proposition 3.3.

3.2. Minimal Ferenczi subshifts are S-adic. From now on, we assume that (XW , S) is
a minimal and aperiodic Ferenczi subshift. Let {a1, a2, . . . , a�} be the set of values of the
sequence (an,i : n ≥ 0, 0 ≤ i < qn) with a1 < a2 < · · · < a�.

We begin by constructing a sequence of alphabets (An)n≥0 as follows. Define
A0 = {0, 1} and for n ≥ 1 we set

An = {a : a = aN ,i for some N ≥ n− 1 and 0 ≤ i < qN }.
In particular, we have A1 = {a1, a2, . . . , a�} and An is included in Am if 1 ≤ m ≤ n.
Consequently, there exists n0 ∈ N such that An = An0 for all n ≥ n0. We define

AW = An0 and dW = |AW |. (15)

It is easy to see that AW is well-defined and that if W ′ is a contraction of W , then
AW = AW ′ . Moreover, because (XW , S) is aperiodic, we have dW ≥ 2. Indeed, suppose
that AW = {a} for some a. Then, one has that wn = wn01awn01a . . . wn01awn0 for
n ≥ n0, contradicting the aperiodicity.

Define the morphism τ0 : A∗1 → A∗0 by τ0(a) = 01a for a ∈ A1 and the morphism
τ̃n : A∗n+1 → A∗n by

τ̃n(a) = an−1,0an−1,1 . . . an−1,qn−1−1a, a ∈ An+1, n ≥ 1. (16)

Each morphism τ̃n for n ≥ 1 is well-defined, of constant length and right permutative.
Indeed, the images of letters under τ̃n differ only at the last letter.

We define the directive sequence τ̃W = (̃τn : A∗n+1 → A∗n)n≥0, where τ̃0 = τ0.

LEMMA 3.1. We have τ̃[0,n+1)(a) = wn1a for all n ≥ 0 and a ∈ An+1.
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Proof. By induction, the property holds if n = 0 because w0 = 0. Now if the property
holds for n ≥ 0, then for a ∈ An+2 we have

τ̃[0,n+2)(a) = τ̃[0,n+1)(an,0an,1 . . . an,qn−1a) = wn1an,0wn1an,1 . . . wn1an,qn−1wn1a ,

which is precisely wn+11a by (10), proving the property by induction.

LEMMA 3.2. The directive sequence τ̃W is primitive. Moreover, for all n ≥ 0 and
a ∈ An+1, there exists N > n such that wn1a is a factor of the word wN .

Proof. For the first assumption let n ≥ 0. One has to find N > n such that Mτ̃[n,N) has
positive entries. If n = 0 this is given by Lemma 3.1. Suppose n ≥ 1. If a belongs An,
then, by definition, there exists N ≥ n− 1 such that aN ,i = a for some 0 ≤ i < qN . This
implies that a has an occurrence in τ̃N+1(b) for all b ∈ AN+2, and hence, by (16), it also
has an occurrence in τ̃[n,N+2)(b). This proves the first claim.

For the second claim, let n ≥ 0 and a ∈ An+1. As τ̃W is primitive, there exist N > n

and b ∈ AN+1 such that τ̃[n+1,N+1)(b) = uavb for some words u, v. Hence, by Lemma 3.1
we obtain

wN1b = τ̃[0,N+1)(b) = τ̃[0,n+1)(uavb) = u′wn1av′wn1b,

for some words u′, v′, and thus wn1a is a factor of the word wN .

Now we prove that the directive sequence τ̃W generates the subshift XW .

PROPOSITION 3.3. We have XW = Xτ̃W .

Proof. If x belongs to XW , then every factor of x is a factor of some generating word
wn for some n ≥ 0 and, hence, also a factor of wn1a = τ̃[0,n+1)(a) for some a ∈ An+1 by
Lemma 3.1. Thus, x belongs to Xτ̃W and XW is included in Xτ̃W .

If now x belongs to Xτ̃W , then every factor of x is a factor of τ̃[0,n)(a) = wn−11a for
some n ≥ 1 and a ∈ An, thus also a factor of wN for some N ≥ n by Lemma 3.2. We
conclude that x belongs to XW and Xτ̃W is included in XW .

3.3. Recognizable directive sequences for minimal Ferenczi subshifts. In this section,
by a slight modification of the directive sequence τ̃W , we describe a primitive, proper and
recognizable directive sequence τW generating the minimal Ferenczi subshift (XW , S).
This is summarized in Theorem 3.7.

We say that the sequence of generating words W is standard if the sequence (qn)n≥0

given by (10) satisfies qn ≥ 2 for each n ≥ 0. Observe that we can assume without loss of
generality that each sequence W is standard. Indeed, this follows directly from Equation
(14). From now on assume that W is standard.

In order to apply Proposition 2.6 and obtain sequences of CKR partitions for the subshift
(XW , S), we need each morphism τ̃n for n ≥ 1 to be proper, which is not the case. We
define a morphism τn : A∗n+1 → A∗n which is proper and rotationally conjugate (as defined
in §2.2.2) to τ̃n by

τn(a) = an−1,1an−1,2 . . . an−1,qn−1−1aan−1,0, a ∈ An+1, n ≥ 1. (17)
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As W is standard, this is a well-defined proper morphism of constant length which is
rotationally conjugate to τ̃n:

an−1,0τn(a) = τ̃n(a)an−1,0, a ∈ An+1, n ≥ 1. (18)

We define the directive sequence τW = (τn : A∗n+1 → A∗n)n≥0.

LEMMA 3.4. For a ∈ Am+1 and m ≥ 1 we have

a0,0τ[1,2)(a1,0) . . . τ[1,m)(am−1,0)τ[1,m+1)(a)

= τ̃[1,m+1)(a)̃τ[1,m)(am−1,0) . . . τ̃[1,2)(a1,0)a0,0.

Proof. We begin by proving the following.

Claim 3.4.1. For 1 ≤ n ≤ N and a ∈ AN+1, we have

τ[n,N)(aN−1,0)τ[n,N+1)(a) = τ[n,N)(̃τN (a))τ[n,N)(aN−1,0).

Indeed, by means of a simple computation

τ[n,N)(aN−1,0)τ[n,N+1)(a)

= τ[n,N)(aN−1,0)τ[n,N)(τN(a))

= τ[n,N)(aN−1,0)τ[n,N)(aN−1,1 . . . aN−1,qN−1−1aaN−1,0)

= τ[n,N)(aN−1,0 . . . aN−1,qN−1−1a)τ[n,N)(aN−1,0)

= τ[n,N)(̃τN (a))τ[n,N)(aN−1,0),

proving the claim. This implies that for n ∈ [1, N] and w ∈ A∗N+1, then

τ[n,N)(aN−1,0)τ[n,N+1)(w) = τ[n,N)(̃τN (w))τ[n,N)(aN−1,0). (19)

By induction, the statement in the lemma is true if m = 1 (see (18)). Assume that the
statement holds for m ≥ 1. By the claim, for a ∈ Am+2 we obtain

a0,0τ[1,2)(a1,0) . . . τ[1,m)(am−1,0)τ[1,m+1)(am,0)τ[1,m+2)(a)

= a0,0τ[1,2)(a1,0) . . . τ[1,m)(am−1,0)τ[1,m+1)(̃τm+1(a))τ[1,m+1)(am,0).

By using (19) with w = τ̃[k,m+2)(a) for k = m+ 1, m, . . . , 2 and the induction hypothe-
sis, the last term is equal to

τ̃[1,m+2)(a)a0,0τ[1,2)(a1,0) . . . τ[1,m+1)(am,0)

= τ̃[1,m+2)(a)̃τ[1,m+1)(am,0) . . . τ̃[1,2)(a1,0)a0,0,

finishing the proof by induction.

We now prove that the sequences τW and τ̃W generate the same subshift.

PROPOSITION 3.5. We have XW = XτW .

Proof. By Proposition 3.3, it is enough to show that XτW = Xτ̃W .

Claim 3.5.1. The word a0,0τ[1,2)(a1,0) . . . τ[1,n)(an−1,0) is a suffix of τ[1,n+1)(a) for all
a ∈ An+1 and n ≥ 1.
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Indeed, this is true for n = 1. Assume that the claim holds for n ≥ 1. If a belongs to
An+2, then the word a0,0τ[1,2)(a1,0) . . . τ[1,n)(an−1,0)τ[1,n+1)(an,0) is a suffix of the word

τ[1,n+1)(an,1) . . . τ[1,n+1)(an,qn−1)τ[1,n+1)(a)τ[1,n+1)(an,0)

= τ[1,n+1)(an,1 . . . an,qn−1aan,0) = τ[1,n+2)(a),

proving the claim by induction.
Let x ∈ Xτ̃W and w be a factor of x. Then w is a factor of τ0 ◦ τ̃[1,n+1)(a) for some

n ≥ 1 and a ∈ An+1. By Lemma 3.4, we deduce that w is a factor of the word

τ0(a0,0τ[1,2)(a1,0) . . . τ[1,n)(an−1,0))τ0(τ[1,n+1)(a)).

By using the previous claim with a = an,qn−1, the word w is a factor of

τ0(τ[1,n+1)(an,qn−1))τ0(τ[1,n+1)(a)),

and by (17) also a factor of τ0 ◦ τ[1,n+2)(a). Thus, x belongs to XτW and Xτ̃W is included
inXτW . Proving a similar claim reversing the roles ofXτW andXτ̃W , we obtain thatXτW
is included in Xτ̃W .

We observe that the directive sequence τW is primitive. Indeed, this follows directly
from Lemma 3.2 because τn is rotationally conjugate to τ̃n for each n ≥ 1.

LEMMA 3.6. The directive sequences τW and τ̃W are recognizable.

Proof. Let y ∈ XW be any aperiodic point. We prove the uniqueness of a couple (k, x)
with x ∈ AZ

1 , 0 ≤ k < |τ0(x0)| such that y = Skτ0(x). Indeed, y can be decomposed
uniquely into words from the set {01a : a ∈ A1}, and so there exists a unique such couple
(k, x) (the zero coordinate of x corresponds to the symbol a ∈ A1 such that the word 01a

covers the coordinate y0). Hence, τW and τ̃W are recognizable at level zero.
For n ≥ 1 the morphism τn is rotationally conjugate to the right permutative morphism

τ̃n (see §3.2). Hence, the morphisms τn and τ̃n are fully recognizable for aperiodic points
by Proposition 2.2. We conclude the proof using Proposition 2.3.

By combining Proposition 3.5, Lemma 3.6 and the previous discussion, we deduce the
following.

THEOREM 3.7. A subshift (X, S) is a minimal Ferenczi subshift if and only if it is an
S-adic subshift generated by a directive sequence τW as in (17) where the sequence
(an,i : n ≥ 0, 0 ≤ i < qn) is bounded.

3.4. Some useful computations for Ferenczi subshifts. In this section we show some
useful relations between the parameters defining a minimal Ferenczi subshift (XW , S)
defined by a sequence of generating words W given by (10).

Define

fn(a) = #{0 ≤ i < qn−1 : an−1,i = a}, a ∈ An, n ≥ 1 (20)
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and let fn be the column vector fn = (fn(a))a∈An
. For a vector f in RA we use the notation

|f | =∑
a∈A f (a). Observe that for n ≥ 1,

|fn| = qn−1 (21)

∑
b∈An

fn(b) · b =
qn−1−1∑
i=0

an−1,i . (22)

We now compute the height vectors associated with τW and give some estimates. We
recall Equation (9):

hn(a) = |τ[0,n)(a)|, a ∈ An, n ≥ 0.

LEMMA 3.8. Let W = (wn)n≥0 be a sequence of generating words and τW be the
associated directive sequence given by (17). Then, the height vectors (hn)n≥0 associated
with τW satisfy

hn(a) = a + |wn−1|, a ∈ An, n ≥ 1. (23)

In particular, there exists K ≥ 1 such that

K−1hn(b) ≤ hn(a) ≤ Khn(b), a, b ∈ An, n ≥ 0. (24)

Moreover, there exists a constant L ≥ 1 such that

L−1Q0,n−1 ≤ hn(a) ≤ LQ0,n−1, a ∈ An, n ≥ 1 (25)

Proof. The computation of h1 is clear from the definition. Assume that (23) holds for
n ≥ 1. For a ∈ An+1, by using (21), (22) and (11), we obtain

hn+1(a) =
∑
b∈An

hn(b)Mτn(b, a) = hn(a)(1+ fn(a))+
∑

b∈An, b �=a
hn(b)fn(b)

= (a + |wn−1|)(1+ fn(a))+
∑

b∈An, b �=a
(b + |wn−1|)fn(b)

= a + |wn−1| +
∑
b∈An

fn(b) · |wn−1| +
∑
b∈An

fn(b) · b

= a + (qn−1 + 1)|wn−1| +
qn−1−1∑
i=0

an−1,i

= a + |wn|,

proving (23) by induction. The estimate (24) follows directly from (23).
By the definition of the morphism τ0, there exists a constant L ≥ 1 such that

L−1|w| ≤ |τ0(w)| ≤ L|w|, w ∈ A∗1.
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Let a ∈ An, n ≥ 1. By (2), we have

hn(a) = |τ0 ◦ τ[1,n)(a)| ≤ L|τ[1,n)(a)| = L
n−1∏
i=1

|τi | = LQ0,n−1.

Analogously, we obtain L−1Q0,n−1 ≤ hn(a), thus obtaining (25).

The composition matrices of the directive sequence τW can be computed as

Mτ0 =
(

1 . . . 1
a1 . . . a�

)
, Mτn = In,n+1 + fn · un, n ≥ 1, (26)

where the matrix In,n+1 is given for each a ∈ An and b ∈ An+1 by In,n+1(a, b) = 1 if
a = b and 0 otherwise and un is the row vector of ones in RAn+1 .

Let n0 ∈ N be such that An = AW for all n ≥ n0, let I be the identity matrix in RAW

and let u be the row vector of ones in RAW .

LEMMA 3.9. Let g1, g2, . . . , gn be column vectors indexed by a finite alphabet A. Let

Ai = I + gi · u, 1 ≤ i ≤ n,

where I is the identity in RA and u is the row vector of ones in RA. Then

A1A2 . . . An = I +
( n∑
k=1

n∏
j=k+1

(1+ |gj |)gk
)
· u, n ≥ 1,

and

A−1
i = I −

gi

|gi | + 1
· u, 1 ≤ i ≤ n.

Proof. It is easy to check that the inverse of Ai is as given. The formula for the product
A1A2 . . . An is clearly true for n = 1. Suppose that it is true for n and let us show that it
is true for n+ 1. In fact,

A1 . . . AnAn+1 =
(
I +

( n∑
k=1

n∏
j=k+1

(1+ |gj |)gk
)
· u

)
(I + gn+1 · u)

= I + (1+ |gn+1|)
( n∑
k=1

n∏
j=k+1

(1+ |gj |)gk
)
· u+ gn+1 · u

= I +
( n∑
k=1

n+1∏
j=k+1

(1+ |gj |)gk
)
· u+ gn+1 · u

= I +
( n+1∑
k=1

n+1∏
j=k+1

(1+ |gj |)gk
)
· u.

By Lemma 3.9 and (13), we have

MτmMτm+1 . . . Mτn−1 = I + fm,n · u, n0 ≤ m < n, (27)
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where

fm,n =
n−1∑
k=m

Qk,n−1fk . (28)

Observe that

|fm,n| + 1 = Qm−1,n−1. (29)

Thus, Lemma 3.9 implies

(MτmMτm+1 . . . Mτn−1)
−1 = I − fm,n

Qm−1,n−1
· u, n0 ≤ m < n. (30)

Example 3.10. Let a < b < c < d be positive integers. Define a sequence W = (wn)n≥0

of generating words such that for infinitely many values of n

wn+1 = wn1awn1bwn and wn+1 = wn1cwn1dwn.

Hence, AW = {a, b, c, d}. The directive sequence τW consists of two morphisms τa,b and
τc,d , each one occurring infinitely many times in τW , defined, for u ∈ AW , by

τa,b(u) = bua,

τc,d(u) = duc.
The composition matrices indexed by AW are

Mτa,b =

⎛⎜⎜⎝
2 1 1 1
1 2 1 1
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , Mτc,d =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
1 1 2 1
1 1 1 2

⎞⎟⎟⎠ .

4. Topological dynamical properties of minimal Ferenczi subshifts
In what follows, W is a standard sequence as given by (10) generating a minimal Ferenczi
subshift. Let (XW , S) be the subshift it generates and τW the associated directive
sequence given by (17).

4.1. Unique ergodicity. The unique ergodicity of Ferenczi subshifts is a folklore result
[Fer97, §1.1.4]. We provide a short proof.

PROPOSITION 4.1. The system (XW , S) is uniquely ergodic.

Proof. The directive sequence τW defines a sequence of measure vectors (μn)n≥0 given
in §2.3.2. By (7), to prove unique ergodicity of (XW , S) it is sufficient to prove that the
vector μn is uniquely determined for infinitely many values of n.

Recall the definition of Q0,m for m ≥ 1 in (13). Let us consider the vectors (tm)m≥1

defined by tm = Q0,m−1μm, m ≥ 1. By (7) we have

tm = Q0,m−1μm = Q0,m

qm−1 + 1
(Mmμm+1) = 1

qm−1 + 1
Mmtm+1, m ≥ 1.
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Consequently, from equations (27) and (28),

tm = 1
Qm−1,n−1

MmMm+1 · · ·Mn−1tn = 1
Qm−1,n−1

(
I +

( n−1∑
k=m

Qk,n−1fk

)
· u

)
tn

= Q0,m−1μn +
( n−1∑
k=m

fk

Qm−1,k

)
· |tn|, n0 ≤ m < n.

It can be checked that
∑
k(fk/Qm−1,k) converges, we define vm =∑∞

k=m(fk/Qm−1,k).
We deduce L−1 ≤ |tn| ≤ L from (25) and, because μn→ 0 as n→+∞, there exists

a sequence of non-negative numbers (αm)m≥n0 such that

μm = αmvm, m ≥ n0.

We deduce αn0 = 1/|P0,n0vn0 | from (7). Again, from (7) we obtain

αm = |vn0 |
|P0,n0vn0 ||Pn0,mvm| , m ≥ n0

and, finally,

μm =
( |vn0 |
|P0,n0vn0 ||Pn0,mvm|

)
vm, m ≥ n0.

This completes the proof.

4.2. Clean directive sequences. To go further in the study of Ferenczi subshifts we need
the following notion inspired by the definition of clean Bratteli diagram given in [BDM10,
§5], see also [BKMS13, Theorem 3.3].

Let τ = (τn : A∗n+1 → A∗n)n≥0 be a recognizable directive sequence and let μ be an
ergodic invariant probability measure of (Xτ , S).

We say that τ is clean with respect to μ if:
(1) there exists n0 ∈ N such that An = An0 for all n ≥ n0; put A = An0 ;
(2) there exist a constant c > 0 and Aμ ⊆ A such that

μ(T n(a)) ≥ c, n ≥ n0, a ∈ Aμ, and (31)

lim
n→+∞ μ(T n(a)) = 0, a ∈ A \Aμ.

We remark that we can always contract the directive sequence τ so that it becomes clean
with respect to μ. If Aμ = A, we say that τ is of exact finite rank.

It is proven in [BKMS13] that exact finite rank of τ implies that (Xτ , S) is uniquely
ergodic. However, the converse is not true, even for Ferenczi subshifts.

Example 4.2. (Ferenczi subshift with non-exact rank) Consider a sequence of generating
words W with associated cutting parameters (qn)n≥0, as defined in (10). Suppose that
qn→+∞ as n→+∞ and that there exists a letter a∗ in AW such that fn(a∗)+ 1 ≤ C
for all large enough values of n and some value C > 0.
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If μ is the unique invariant probability measure of (XW , S), from (6) we obtain

μ(T n(a
∗)) = hn(a∗)μn(a∗) = hn(a∗)

∑
b∈AW

Mn(a
∗, b)μ(T n+1(b))

hn+1(b)

≤ Chn(a
∗)

minb∈AW hn+1(b)
≤ CK

qn−1 + 1
,

where we used

hn+1(b) =
∑
c∈AW

hn(c)Mn(c, b) ≥ K−1hn(a
∗)

∑
c∈AW

Mn(c, b)

= K−1hn(a
∗)(qn−1 + 1), b ∈ AW .

Therefore, μ(T n(a
∗))→ 0 as n→+∞ and τW is not of exact finite rank.

A subshift (X, S) is linearly recurrent if it is minimal and there exists a constantK > 0
such that if u ∈ L(X) and w is a right return word to u in X, then

|w| ≤ K|u|.
We refer to [DP22, Dur00] for more details on linearly recurrent shifts. In [BKMS13] it
is shown that linearly recurrent subshifts have exact finite rank and that the converse is
not true. The following example shows that the converse is not true, even in the family of
Ferenczi subshifts.

Example 4.3. (Ferenczi subshift with exact finite rank that is not linearly recurrent)
Consider a sequence of generating words W such that dW = 2. Let AW = {a, b} and
define the morphism τn by

τn(a) = anb2n−1ab and τn(b) = anb2n−1bb, n ≥ 1.

The composition matrix of τn indexed by AW is Mτn = ( n+1 n
2n 2n+1 ) and, hence, τW is

of exact finite rank [BKMS13, Proposition 5.7]. Observe that for all n the word τ[0,n)(a)
n+1

belongs to the language of XW . Hence, the subshift (XW , S) is not linearly recurrent, see
[DHS99, Theorem 24].

In the following, we characterize exact finite rank of τW .

PROPOSITION 4.4. For a ∈ AW , we have lim infm→+∞ μ(T m(a)) > 0 if and only if

lim inf
m→+∞

∞∑
k=m

fk(a)

Qm−1,k
> 0. (32)

In particular, τW is of exact finite rank if and only if (32) holds for all a ∈ AW .

Proof. Let n0 ∈ N be such that An0 = AW . Consider m ≥ n0 and a ∈ AW . As dW ≥ 2,
there exists b ∈ AW with b �= a. By [BKMS13, Proposition 5.1] one has

μm(a) = lim
n→+∞

|τ[m,n)(b)|a
hn(b)

.
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By (27) and (28), because b �= a one obtains

|τ[m,n)(b)|a
hn(b)

=
∑n−1
k=m Qk,n−1fk(a)

hn(b)
.

Hence, by (6)

μ(T m(a)) = hm(a)μm(a) = lim
n→+∞

hm(a)

hn(b)

n−1∑
k=m

Qk,n−1fk(a)

= lim
n→+∞

hm(a)

hn(b)
Qm−1,n−1

n−1∑
k=m

fk(a)

Qm−1,k
.

Using (25), there exists a constant C ≥ 1 such that

C−1 ≤ hm(a)
hn(b)

Qm−1,n−1 ≤ C, a, b ∈ AW , n0 ≤ m < n.

Therefore, lim infm→+∞ μ(T m(a)) > 0 if and only if

lim inf
m→+∞

∞∑
k=m

fk(a)

Qm−1,k
> 0,

where it can be checked that
∑
k fk(a)/Qm−1,k converges.

4.3. Toeplitz induced systems. Let (XW , S) be a minimal Ferenczi subshift and
τW = (τn : A∗n+1 → A∗n)n≥0 be the directive sequence given by (17). Denote by τ ′W =
(τn+1 : A∗n+2 → A∗n+1)n≥0 the shifted directive sequence of τW and let UW = τ0(Xτ ′W ).
From Corollary 2.5 the induced system (UW , SUW ) of (XW , S) on UW is topologically
conjugate to the S-adic subshift (Xτ ′W , S).

Recall from §§3.2 and 3.3 that each morphism τn has constant length and is rotationally
conjugate to the right permutative morphism τ̃n for n ≥ 1. Therefore, τ ′W is recognizable
and the subshift (Xτ ′W , S) is minimal and aperiodic. Moreover, the associated sequence
of incidence matrices (Mn)n≥0 coincides with the sequence of composition matrices
(Mτn+1)n≥0 by Proposition 2.6.

We deduce that the latter has the equal path number property, that is, for each n ≥ 0
the sum of each column of Mn is constant. This implies that (Xτ ′W , S) is topologically
conjugate to a minimal Toeplitz subshift [GJ00, Theorem 8]. We recall that a subshift
(X, S) with X ⊆ AZ is Toeplitz if X is the closure of the orbit {Snx : n ∈ Z} for some
sequence x = (xn)n∈Z ∈ AZ such that for all n ∈ Z there exists p ∈ N with xn = xn+kp
for all k ∈ Z.

We prove that this Toeplitz subshift is mean equicontinuous. We recall that a topological
dynamical system (X, T ) with a metric d on X is mean equicontinuous if for every
ε > 0 there exists δ > 0 such that if d(x, y) ≤ δ, then ρb(x, y) ≤ ε. Here, ρb denotes the
Besicovitch pseudo-metric given by

ρb(x, y) = lim sup
n→+∞

1
n

n−1∑
k=0

d(T kx, T ky), x, y ∈ X.
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Let (X, T ) be a minimal system. Denote by (Xeq, Teq) to the maximal equicontinuous
factor of (X, T ), by ν to its unique invariant probability measure and let πeq : X→ Xeq

be the corresponding factor map.
The system (X, T ) is mean equicontinuous if and only if it is uniquely ergodic (with

unique invariant probability measure μ) and πeq is a measurable isomorphism between
the systems (X, T , μ) and (Xeq, Teq, ν) [DG16, LTY15]. In particular, this implies that
the system (X, T , μ) has discrete spectrum, that is, there exists an orthonormal basis of
L2(X, μ) consisting of measurable eigenfunctions of (X, T ). We refer to [GRJY21] for
more details about mean equicontinuity.

In what follows, we need the following definitions. For a sequence of positive integers
(pn)n≥0 such that pn divides pn+1 for n ≥ 0, the odometer given by this sequence is the
system (Z(pn)n≥0 , T ), where

Z(pn)n≥0 = lim←− Z/pnZ =
{
(xn)n≥0 ∈

∏
n≥0

Z/pnZ : xn+1 ≡ xn(mod pn), n ≥ 0
}

and the map T : Z(pn)n≥0 → Z(pn)n≥0 is given by

T ((xn)n≥0) = (xn + 1(mod pn))n≥0.

Let τ = (τn : A∗n+1 → A∗n)n≥0 be a primitive, proper and recognizable directive sequence
such that the morphism τn has constant length for each n ≥ 0. It is classical to show that the
maximal equicontinuous factor of (Xτ , S) corresponds to the odometer (Z(|τ[0,n)|)n≥0 , T )
[GJ00]. The factor map πeq : Xτ → Z(|τ[0,n)|)n≥0 can be described as follows. Let x ∈ Xτ .
By recognizability of τ , for every n ≥ 0 there exists a letter an(x) in An and kn(x) with
0 ≤ kn(x) < |τ[0,n)|, uniquely determined, such that

x ∈ Skn(x)τ[0,n)([an(x)]).

Then we define

πeq(x) = (kn(x))n≥0. (33)

It can be observed that kn+1(x) ≡ kn(x)(mod |τ[0,n)|) for x ∈ Xτ .
For a morphism τ : A∗ → B∗ of constant length |τ |, we say that it has a coincidence

at index 0 ≤ i < |τ | if τ(a)i = τ(a′)i for every a, a′ ∈ A. The notion of coincidence has
been used in [Dek78] to characterize the discrete spectrum of constant length substitution
systems. See also [Que87].

PROPOSITION 4.5. The system (UW , SUW ) is mean equicontinuous.

Proof. As was observed previously, the system (UW , SUW ) is topologically conjugate to
the S-adic subshift (Xτ ′W , S). Moreover, as in the proof of Proposition 4.1, this subshift is
uniquely ergodic. Denote by μ its unique invariant probability measure.

The directive sequence τ ′W is primitive, proper, recognizable and consists of morphisms
of constant length. Indeed, from (17) we have |τn+1| = qn + 1, n ≥ 0. Hence, the maximal
equicontinuous factor of (Xτ ′W , S) is the odometer (Z(Q0,n)n≥0 , T ). Denote by ν the unique
invariant probability measure of this odometer and let πeq : Xτ ′W → Z(Q0,n)n≥0 be the
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factor map given by (33). Denote by (T ′n)n≥0 the nested sequence of CKR partitions of
(Xτ ′W , S) given by (8).

For each z = (zn)n≥0 in Z(Q0,n)n≥0 , we write

zn = Q0,n−1tn(z)+ rn(z), 0 ≤ rn(z) < Q0,n−1, 0 ≤ tn(z) < qn−1 + 1, n ≥ 1.

We define

Cn = {0 ≤ i < (qn−1 + 1) : τn has a coincidence at index i}
Dn = {z ∈ Z(Q0,n)n≥0 : tn(z) /∈ Cn}, n ≥ 1.

Claim 4.5.1. If a point z = (zn)n≥0 in Z(Q0,n)n≥0 is such that tn(z) belongs to Cn for
infinitely many values of n, then |π−1

eq ({z})| = 1.

Indeed, let x, y ∈ Xτ ′W be such that kn(x) = kn(y) = zn for n ≥ 0. If tn(z) belongs to
Cn, then there exists a letter �(z) in An such that τn(an+1)tn(z) = �(z) for every an+1 in
An+1. Consequently, we have

Sznτ[1,n+1)([an+1]) ⊆ Srn(z)τ[1,n)([�(z)]), an+1 ∈ An+1.

This implies that there exists infinitely many values of n for which x and y
belong to Srn(z)τ[1,n)([�(z)]). As (T ′n)n≥0 is a nested sequence, we deduce that
diam(Srn(z)τ[1,n)([�(z)]))→ 0 as n→+∞ and, therefore, x = y, proving the claim.

From the claim, it follows that if we denote by Z the set of points in Z(Q0,n)n≥0 that are
not invertible under πeq, then

Z ⊆
⋃
n≥0

⋂
m≥n

Dm.

Observe that, from (17), we obtain ν(Dm) = 1− |Cm|/(qm + 1) = 1/(qm + 1) form ≥ 0.
Thus,

ν

( ⋂
m≥n

Dm

)
=

∏
m≥n

1
qm + 1

≤
∏
m≥n

1
2
= 0,

and, hence, ν(Z) = 0. This proves that πeq is a measurable isomorphism between
(Xτ ′W , S, μ) and (Z(Q0,n)n≥0 , T , ν), and concludes the proof.

4.4. Computation of the topological rank. In this section we compute explicitly the
topological rank of a minimal Ferenczi subshift (XW , S). We refer to §§2.3 and 2.4 for
the definitions.

For an abelian group G we denote by rank G the rational rank of G, that is,

rankQ G = dimQ G⊗Q.

4.4.1. Basics on tensor products. We need very classical facts on tensor products
between abelian groups and Q. We recall what is needed to follow our arguments and
refer to [Bou62] for more details.

Let G be an abelian group. Then, it has a Z-module structure and we can define the
tensor product G⊗Q. Moreover, this product has the structure of a vector space over Q.

https://doi.org/10.1017/etds.2023.7 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.7


3948 F. Arbulú and F. Durand

Elements in G⊗Q are linear combinations of the form
n∑
k=0

gk ⊗ qk , n ∈ N, gk ∈ G, qk ∈ Q, 0 ≤ k ≤ n.

An element of the form g ⊗ q with g ∈ G and q ∈ Q is said to be a pure tensor.

PROPOSITION 4.6. Let G be an abelian group and (Gn)n≥0 be a sequence of abelian
groups. We have the following:
(a) (lim−→ Gn)⊗Q and lim−→(Gn ⊗Q) are isomorphic as vector spaces over Q;
(a) if g ⊗ q = 0 in G⊗Q, then q = 0 or g is a torsion element in G.

4.4.2. Back to the computation of the topological rank. The following lemma gives a
lower bound for the topological rank of a minimal Cantor system.

LEMMA 4.7. Let (X, T ) be a minimal Cantor system. Then

rankQ H(X, T ) ≤ rank(X, T ). (34)

Proof. We can assume rank(X, T ) < +∞. Let (T n)n≥0 be any nested sequence of CKR
partitions of (X, T ) such that lim infn→+∞ |A(T n)| < +∞. Denote by (Mn)n≥0 the
sequence of incidence matrices of (T n)n≥0. We can assume that |A(T n)| = p, n ≥ 0 for
some p ∈ N.

By Proposition 2.7, the dimension group H(X, T ) can be seen as the direct limit
lim−→ ZA(T n) with linear maps Mn : ZA(T n)→ ZA(T n+1), n ≥ 0. Define the linear maps
jn+1,n : ZA(T n) ⊗Q→ ZA(T n+1) ⊗Q on pure tensors by

jn+1,n(v ⊗ q) = vMn ⊗ q, v ∈ ZA(T n), q ∈ Q, n ≥ 0

and extend them by linearity to ZA(T n) ⊗Q. We consider lim−→(ZA(T n) ⊗Q) with linear
maps (jn+1,n)n≥0.

Proposition 4.6 implies thatH(X, T )⊗Q and lim−→(ZA(T n) ⊗Q) are isomorphic vector
spaces over Q. Each morphism jn : ZA(T n) ⊗Q→ lim−→(ZA(T n) ⊗Q) is linear and we
have

dimQ Im jn ≤ dimQ Im jn + dimQ ker jn = p.

As Im jm ⊆ Im jn for m < n, there exists N ∈ N such that Im jm = Im jn for all
m, n ≥ N . This, together with the fact that lim−→(ZA(T n) ⊗Q) =⋃

n≥0 Im jn, implies that
rankQ H(X, T ) ≤ p.

As the choice of the sequence (T n)n≥0 is arbitrary, we deduce (34).

The proof of the next lemma is essentially given in [BCBD+21, Theorem 4.1].

PROPOSITION 4.8. Let τ = (τn : A∗n+1 → A∗n)n≥0 be a primitive, proper and invertible
directive sequence. Let d = |A0|. Then

rankQ H(Xτ , S) = rank(Xτ , S) = d .
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Proof. By Proposition 2.1 we have that (Xτ , S) is an aperiodic subshift. Let (T n)n≥0 be
the sequence given by (8). As τ is recognizable [BSTY19, Theorem 3.1], by Proposition
2.6 we have that (T n)n≥0 is a nested sequence of CKR partitions. Hence, by (5) we have
rank(Xτ , S) ≤ d .

Now we show that H(Xτ , S)⊗Q is finite-dimensional. Indeed, we prove that

B = {[χ[a]]⊗ 1 : a ∈ A0}
is a basis ofH(Xτ , S)⊗Q, where [χ[a]] denotes the class of the characteristic function of
the cylinder [a] in H(Xτ , S). This will finish the proof because (34) implies

d = rankQ H(Xτ , S) ≤ rank(Xτ , S) ≤ d .

Following the same steps as in the proof of [BCBD+21, Theorem 4.1] and because the
matrix M−1

τ[0,n)
has rational entries, we deduce that B spans H(Xτ , S)⊗Q. Suppose that

α = (αa)a∈A0 ∈ ZA0 is such that ∑
a∈A0

αa[χ[a]]⊗ 1 = 0.

The fact that H(Xτ , S) is a torsion-free abelian group [DP22, Proposition 2.1.13] and
Proposition 4.6 imply that

∑
a∈A0

αa[χ[a]] = 0 in H(Xτ , S). Then, as in the proof of
[BCBD+21, Theorem 4.1], we obtain α = 0 and B is a basis.

Proposition 4.8 and (30) directly imply the following.

COROLLARY 4.9. Let (XW , S) be a minimal Ferenczi subshift. Then

rank(XW , S) = dW .

4.5. Computation of the dimension group. We now compute the dimension group of a
minimal Ferenczi subshift (XW , S). Let us explain how we proceed.

Let τW be the directive sequence associated with (XW , S) and n0 ∈ N be such that
An = AW for n ≥ n0. Define the directive sequence

τ̂W = (τn+n0 : A∗W → A∗W )n≥0.

By Lemma 3.9, τ̂W is invertible. By Lemma 2.4, the S-adic subshift (Xτ̂W , S) is
topologically conjugate to an induced system of (XτW , S) on some clopen set and, from
§2.4.4, the dimension group of τ̂W is unital order isomorphic to (HW , H+W , 1), where

HW = {y ∈ RAW : yMτn0
Mτn0+1 . . . Mτn0+n−1 ∈ ZAW for all nlarge enough},

H+W = {y ∈ RAW : yMτn0
Mτn0+1 . . . Mτn0+n−1 ∈ Z

AW+ for all n large enough},
and 1(a) = 1 for a ∈ AW . Moreover, the dimension group of (XW , S) is unital order
isomorphic to (HW , H+W , vW ), where vW = (|τ[0,n0)(a)|)a∈AW .

Recall the definition of the sequence (qn)n≥0 given in (10) and of Qm,n in (13).
By Proposition 4.1 and Lemma 2.4, the system (Xτ̂W , S) is uniquely ergodic. Denote

by μ̂ its unique invariant probability measure and define the column probability vector
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μ̂ ∈ RAW by

μ̂(a) = μ̂([a]), a ∈ AW .

As in the proof of Proposition 4.4, by using [BKMS13, Proposition 5.1] we have

μ̂(a) =
∞∑
k=n0

fk(a)

Qn0−1,k
, a ∈ AW . (35)

In order to describe the dimension group of (XW , S), we need to define, for a sequence
of positive integers (an)n≥N , the following additive group

Z[(an)n≥N ] =
{

m

aNaN+1 · · · an : m ∈ Z, n ≥ N
}

.

If an = a for all n ≥ N , we write Z[1/a] = Z[(an)n≥N ].
Let a′ ∈ AW be such that a′ = mina∈AW a. Define BW = AW \ {a′}.
We see elements in RAW as vectors in RBW × R. Define the column vector z ∈ RAW

by

z(b) = μ̂(b), b ∈ BW and z(a′) = 1.

PROPOSITION 4.10. Let (XW , S) be a minimal Ferenczi subshift and (qn)n≥0 be the
sequence given in (10). The dimension group K0(XW , S) is unital order isomorphic to
(GW , G+W , uW ), where

GW = ZBW × Z[(qn + 1)n≥n0−1];

G+W = {x ∈ GW : x · z > 0} ∪ {0};
and uW is given by uW (b) = b − a′, b ∈ BW and uW (a′) = a′ + |wn0−1|.
Proof. We begin by proving the following.

Claim 4.10.1. We have

H+W = {y ∈ HW : y · μ̂ > 0} ∪ {0}.
Indeed, because the directive sequence τ̂ is primitive, proper and recognizable, the

measure μ̂ is uniquely determined by the associated sequence of measure vectors (μ̂n)n≥0

as defined in §2.3.2. For a ∈ AW , denote by ea ∈ ZA the vector such that ea(b) = 1 if
a = b and 0 otherwise.

Let P̂n = Mτn0
Mτn0+1 . . . Mτn0+n−1 for n > 0. By (7), we have

μ̂ = P̂nμn, n > 0.

If y belongs to H+W \ {0} and n > 0 is such that yP̂n is in Z
AW+ , then

y · μ̂ = y · P̂nμn = (yP̂n) · μn > 0.

Now, let y ∈ HW with y · μ̂ > 0. By contradiction, if y is not in H+W , there exists
N ∈ N and a sequence (an)n≥N such that an belongs to AW and (yP̂n) · ean ≤ −1 for
all n ≥ N . Hence, there exists a ∈ AW and a sequence (nk)k≥0 such that nk ≥ N and
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(yP̂nk ) · ea ≤ −1 for k ≥ 0. Let ν̂ be a limit point of the sequence of probability vectors
(P̂nk ea/|P̂nk ea|)k≥0.

By unique ergodicity of (Xτ̂ , S), we deduce ν̂ = μ̂. Finally, up to passing to a
subsequence,

0 < y · μ̂ = lim
k→+∞

(yP̂nk ) · ea
|P̂nk ea|

≤ 0,

a contradiction. This proves the claim.
Let y ∈ HW . There exists n ≥ n0 with yMτn0

Mτn0+1 . . . Mτn0+n−1 ∈ ZAW . Recall that
u is the row vector of ones in RAW . By (27), we see that

yMτn0
Mτn0+1 . . . Mτn0+n−1 = y + (y · fn0,n0+n)u ∈ ZAW ,

and, hence, y(b)− y(a′) belongs to Z, b ∈ BW . Observe that

uMτn0
Mτn0+1 . . . Mτn0+n−1 = (|fn0,n0+n| + 1)u.

Moreover, from (13) and (29), we have

|fn0,n0+n| + 1 = (qn0−1 + 1)(qn0 + 1) . . . (qn0+n−2 + 1),

so y(a′) belongs to Z[(qn + 1)n≥n0−1].
These two observations allow us to define the following group isomorphism

ψ : HW → ZBW × Z[(qn + 1)n≥n0−1]

y �→ (y′, y(a′)),

where y′(b) = y(b)− y(a′) for b ∈ BW . Moreover, for y ∈ HW we have y · μ̂ = ψ(y) · z
and, hence,

ψ(H+W ) = {x ∈ GW : x · z > 0} ∪ {0}.
From Lemma 3.8, we obtain ψ(vW ) = uW . This completes the proof.

4.6. Zoology of dimension groups of Ferenczi type. We now characterize the dimension
groups that can be obtained from minimal Ferenczi subshifts. For this, we need to recall
the following well-known fact about numeration systems.

4.6.1. Facts about numeration systems. Let (pk)k≥0 be a sequence of positive integers
with pk ≥ 2, k ≥ 0. Then, for every real number x with 0 ≤ x ≤ 1, there exists a sequence
(fk)k≥1 such that 0 ≤ fk ≤ pk−1 for k ≥ 1 and

x =
∞∑
k=1

fk

p0p1 . . . pk−1
.

We say that (fk)k≥1 is the expansion of x in the base (pk)k≥0.

4.6.2. Ferenczi-type dimension groups. Let B be a non-empty alphabet. We define

UB = {u ∈ ZB
>0 : u(b) �= u(b′) for b, b′ ∈ B}.
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Observe that the unit uW in Proposition 4.10 belongs to UBW × Z>0 because all elements
in AW are distinct. Define


B = {z ∈ RB
>0 :

∑
b∈B z(b) < 1}

and let (rn)n≥0 be a sequence of integers with rn ≥ 2.
We say that a dimension group (G, G+, u) is of Ferenczi type if there exist a non-empty

alphabet B, a sequence (rn)n≥0 as before and z ∈ 
B × {1} such that

G = ZB × Z[(rn + 1)n≥0];

G+ = {x ∈ G : x · z > 0} ∪ {0}; and

u ∈ UB × Z>0.

Proposition 4.10 shows that the dimension group of a minimal Ferenczi subshift is of
Ferenczi type. Conversely, let (G, G+, u) be a dimension group of Ferenczi type given by
B, (rn)n≥0 and z. Write u = (v, w), where v ∈ UB and w ∈ Z>0.

Let a′ = w − 1 and s(b) = a′ + v(b) for b ∈ B. Observe that s(b) > a′ and
s(b) �= s(b′) for b, b′ ∈ B. Define any sequence of generating words W such that:
(1) n0 = 1 and AW = {s(b) : b ∈ B} ∪ {a′};
(2) qn = rn for n ≥ 0; and
(3) for b ∈ BW , let (fk(s(b)))k≥1 be the expansion of z(b) in the base (qk + 1)k≥0,

that is,

z(b) =
∞∑
k=1

fk(s(b))

(q0 + 1)(q1 + 1) . . . (qk−1 + 1)
, b ∈ B.

From Equation (35), we have thus proved the following.

COROLLARY 4.11. A dimension group K = (G, G+, u) is of Ferenczi type if and only if
there exists a minimal Ferenczi subshift (XW , S) such that K is unital order isomorphic to
K0(XW , S).

Example 4.12
(1) The Chacon subshift is defined by the sequence of generating words W which

satisfies

wn+1 = wnwn1wn, n ≥ 0.

Proposition 4.10 shows that the dimension group of the Chacon subshift is

(Z× Z[1/3], {(x, y) ∈ Z× Z[1/3] : x + 2y > 0} ∪ {(0, 0)}, (1, 1)).

This dimension group is unital order isomorphic to

(Z× Z[1/3], Z× Z+[1/3], (1, 1)).

(2) The Thue–Morse subshift is the subshift generated by the constant directive sequence
τ = (τ , τ , . . .), where the morphism τ : {a, b}∗ → {a, b}∗ is given by τ(a) = ab
and τ(b) = ba. Its dimension group is
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(Z× Z[1/2], {(x, y) ∈ Z× Z[1/2] : −x + 3y > 0} ∪ {(0, 0)}, (0, 1)),

see [DP22, Example 4.6.11].
We claim that the Thue–Morse subshift is not strongly orbit equivalent to a

minimal Ferenczi subshift. Indeed, by Corollary 4.11, suppose that there exists a
non-empty alphabet B, a sequence (rn)n≥0, an order unit u ∈ UB × Z>0 and a
isomorphism

ψ : Z× Z[1/2]→ ZB × Z[(rn + 1)n≥0]

such that ψ(0, 1) = u.
The existence of ψ ensures the existence of an isomorphism between

(Z× Z[1/2])⊗Q and (ZB × Z[(rn + 1)n≥0])⊗Q and, thus, |B| = 1.
For a prime number p, denote by vp(·) the p-adic valuation. For an integer

sequence (an)n≥0, the sequence (vp(a0 . . . an))n≥0 is increasing and, hence, it is
eventually constant or tends to +∞. We denote by vp((an)n≥0) the eventually
constant value of it (either finite or +∞).

It is easy to show that v2((rn + 1)n≥0) = +∞ and vp((rn + 1)n≥0) = 0 for
p �= 2, so we can suppose Z[(rn + 1)n≥0] = Z[1/2].

Write ψ(0, 1) = (m, w), m ∈ Z, w ∈ Z[1/2] and ψ(0, 1/2n) = (mn, wn),
mn ∈ Z, wn ∈ Z[1/2]. Then

(2nmn, 2nwn) = (m, w), n ∈ N.

In particular, 2n divides m for all n ≥ 0, hence m = 0. If ψ(1, 0) = (d, v) for d ∈ Z

and v ∈ Z[1/2], we obtain

ψ(s, t) = (ds, sv + tw), s ∈ Z, t ∈ Z[1/2].

We have u = ψ(0, 1) = (0, w), but 0 does not belong to UB. This shows that
the Thue–Morse subshift is not strongly orbit equivalent to any minimal Ferenczi
subshift.

4.7. Comments on orbit equivalence. In this section we characterize the orbit equiva-
lence class of minimal Ferenczi subshifts. With this purpose, we compute explicitly the
dimension group K0(XW , S)/ Inf K0(XW , S) of a minimal Ferenczi subshift (XW , S).
Recall the definition of GW , z and uW given in Proposition 4.10.

PROPOSITION 4.13. Let (XW , S) be a minimal Ferenczi subshift. Let z̃ be the unique
vector collinear to z and such that uW · z̃ = 1. Define

JW = {x · z̃ : x ∈ GW }.

Then, the dimension group K0(XW , S)/ Inf K0(XW , S) is unital order isomorphic to

(JW , {y ∈ JW : y ≥ 0}, 1).
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Proof. From Proposition 4.10, we see that Inf GW = {x ∈ GW : x · z̃ = 0}. It is straight-
forward to check that the map

GW/ Inf GW → JW
[x] �→ x · z̃

is an isomorphism between the dimension groups GW/ Inf GW and JW . Moreover, this
map sends the induced image of G+W in GW/ Inf GW to {x ∈ JW : x ≥ 0} and [uW ] to 1
because uW · z̃ = 1.

In particular, observe that if z has rationally independent entries, then the strong orbit
equivalence class of (XW , S) coincides with the orbit equivalence class.

One can check that z̃ = cz, where

c = lim
n→+∞

Qn0−1,n0+n−1

|wn0+n−1| .

4.8. Continuous eigenvalues. In this section we recall results in [GZ19] concerning
continuous eigenvalues, topological weak mixing and topological mixing of minimal Fer-
enczi subshifts. We observe they can be deduced from the general framework provided by
[DFM19] and Theorem 3.7. It can be easily observed that Ferenczi subshifts (XW , S) has
no continuous irrational eigenvalues and, moreover, the complex value λ = exp(2πip/q)
with p/q a rational number is a continuous eigenvalue of (XW , S) if and only if there
exists n ≥ 0 such that q divides all the coordinates of the heights hn. From Lemma 3.8,
this condition translates into q divides |wn| + am,i for all m ≥ n and 0 ≤ i < qm.

As a consequence the following results can be deduced.

PROPOSITION 4.14. [GZ19, Theorem 1.1] A minimal Ferenczi subshift (XW , S) is
topologically weakly mixing if and only if for all integer q > 1 and all n ≥ 0 there exists
m ≥ n and 0 ≤ i < qm such that q does not divide |wn| + am,i .

PROPOSITION 4.15. [GZ19, Theorem 1.5] Let (XW , S) be a minimal Ferenczi subshift.
Then, there exists a maximal integer q such that (Z/qZ, +1(mod q)) is a topological
factor of (XW , S). Moreover, this factor corresponds to the maximal equicontinuous factor
of (XW , S).

4.9. Topological mixing. We recall that a topological dynamical system (X, T ) is said
to be topologically mixing if for any non-empty open sets U , V ⊆ X, there exists N ∈ N

such that

T nU ∩ V �= ∅, n ≥ N .

We prove in the following a necessary condition for a minimal subshift to be topologically
mixing that have its own interest beyond Ferenczi subshifts. As a direct consequence, we
deduce that minimal Ferenczi subshifts are not topologically mixing.
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For a subshift (X, S) with X ⊆ {0, 1}Z, we define the quantities

a(n) = min
w∈Ln(X)

|w|0 and b(n) = max
w∈Ln(X)

|w|0, n ≥ 1.

LEMMA 4.16. Suppose that (X, S) is minimal and topologically mixing. Then

lim
n→+∞ b(n)− a(n) = +∞.

Proof. Following [KSS05, Proposition 3.2], if (X, S) is topologically mixing we have

lim inf
n→+∞ b(n)− a(n) = sup

n≥1
b(n)− a(n). (36)

Claim 4.16.1. For any invariant ergodic probability measure μ of (X, S) we have

a(n) ≤ nμ([0]) ≤ b(n), n ≥ 1.

Indeed, it is easy to see that the sequence (a(n)/n)n≥1 is superadditive, that is,
a(m+ n) ≥ a(m)+ a(n) for all m, n ≥ 1 and that the sequence (b(n)/n)n≥1 is subad-
ditive, that is, b(m+ n) ≤ b(m)+ b(n) for m, n ≥ 1. In particular, we deduce

lim
n→+∞

a(n)

n
= sup
n≥1

a(n)

n
and lim

n→+∞
b(n)

n
= inf
n≥1

b(n)

n
.

Observe that

a(n)

n
≤ 1
n

#{0 ≤ k < n : xk = 0} = 1
n

n−1∑
k=0

χ[0](S
kx), x ∈ X, n ≥ 1.

By Birkhoff’s theorem, there exists x ∈ X such that

lim
m→+∞

1
m

m−1∑
k=0

χ[0](S
kx) = μ([0]).

Hence, because a(n)/n ≤ supm≥1 a(m)/m, we obtain a(n)/n ≤ μ([0]). Analogously, we
obtain μ([0]) ≤ b(n)/n. We obtain∣∣∣∣ n−1∑

k=0

χ[0](S
kx)− nμ([0])

∣∣∣∣ ≤ b(n)− a(n), x ∈ X, n ≥ 1. (37)

Let f = χ[0] − μ([0]). If lim supn→+∞ b(n)− a(n) �= +∞, by (37) we deduce that
there exists a constant C > 0 such that |∑n−1

k=0 f (S
kx)| ≤ C, for all x ∈ X, n ≥ 1. The

Gottschalk–Hedlund theorem then implies that f = g − g ◦ S for some continuous map
g : X→ R. In particular,

exp(2πig ◦ S) = exp(2πiμ([0])) exp(2πig),

that is, exp(2πiμ([0])) is a non-trivial continuous eigenvalue of (X, S). This contradicts
the fact that (X, S) is topologically weakly mixing.
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Finally, we deduce lim supn→+∞ b(n)− a(n) = +∞ and, together with (36), we
obtain limn→+∞ b(n)− a(n) = +∞.

As a consequence of Lemma 4.16 we deduce the following.

PROPOSITION 4.17. [GZ19, Theorem 1.3] Minimal Ferenczi subshifts are not topologi-
cally mixing.

4.10. Asymptotic classes and automorphism group. Let (X, T ) be a topological dynam-
ical system and d : X ×X→ R be a metric on X. We say that two points x, y ∈ X are
asymptotic if

lim
n→+∞ d(T

nx, T ny) = 0.

Non-trivial asymptotic pairs of points may not exist in an arbitrary topological dynamical
system, but they always exist in the context of non-empty aperiodic subshifts [Aus88,
Ch. 1].

We define the relation∼ in X as follows: x ∼ y if x is asymptotic to T ky for some k ∈ Z.
This defines an equivalence relation. An equivalence class for ∼ that is not the orbit of a
single point is called an asymptotic class.

An automorphism of a topological dynamical system (X, T ) is a homeomorphism
φ : X→ X such that

φ ◦ T = T ◦ φ.

We denote by Aut(X, T ) the group of automorphism of (X, T ) and by 〈T 〉 the subgroup
of Aut(X, T ) generated by integer powers of T.

For a minimal Ferenczi subshift we show that there exists a unique asymptotic class. We
first need the following lemma, for which we recall the definition of cutting points given
in §2.2.4.

LEMMA 4.18. Let τ : A∗ → B∗ be a non-erasing morphism, X ⊆ AZ be a subshift
and Y =⋃

k∈Z Skτ(X). Assume that τ is recognizable in X and that if a and b are
two distinct letters in A, then τ(a) is not a suffix of τ(b). Let y, y ′ in Y be such that
y0 �= y′0 and y(0,+∞) = y′(0,+∞). Suppose that (k, x) and (k′, x′) are the unique centered
τ -representations of y and y′ in X, respectively. Then

C+τ (k, x) = C+τ (k′, x′), x0 �= x′0 and x(0,+∞) = x′(0,+∞).

Proof. We begin by proving the following.

Claim 4.18.1. There exist infinitely many pairs (�, �′) with �, �′ ≥ 0 such that

C�τ (k, x) = C�′τ (k′, x′).
Indeed, by [DDMP21, Lemma 3.2] there exists a constant R > 0 such that if (k, x) and

(k′, x′) are two centered τ -representations in X of points y, y ′ ∈ Y and y[−R,R) = y′[−R,R),
then k = k′ and x0 = x′0.
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Arguing by contradiction, if the claim is not true and because y(0,+∞) = y′(0,+∞)
there exists �0 ≥ 0 such that if � ≥ �0, then C�τ (k, x) /∈ C+τ (k′, x′) and (Sjy)[−R,R) =
(Sjy′)[−R,R), where j = C�0

τ (k, x). However, then j belongs to C+τ (k′, x′), a contradiction.
By the claim, there exists an increasing sequence (�n)n≥0 such that �n ≥ 0 and

C�nτ (k, x) = C�′nτ (k′, x′), for some �′n ≥ 0.

If �n ≥ 2, because y(0,+∞) = y′(0,+∞) and C
�n
τ (k, x) = C�′nτ (k′, x′), we deduce that

τ(x�n−1) is a suffix of τ(x′
�′n−1) or that τ(x′

�′n−1) is a suffix of τ(x�n−1). By assumption,
this implies that x�n−1 = x′�′n−1. By repeating the argument, we see that �n = �′n and

C�τ (k, x) = C�τ (k′, x′), 1 ≤ � ≤ �n, n ≥ 0. Therefore, as (�n)n≥0 is increasing, we deduce
that C+τ (k, x) = C+τ (k′, x′), x0 �= x′0 because y0 �= y′0 and x(0,+∞) = x′(0,+∞). This
completes the proof.

Let (XW , S) be a minimal Ferenczi subshift and τW = (τn : A∗n+1 → A∗n)n≥0 be the
directive sequence given by (17). In order to study the asymptotic classes of (XW , S) we
need the following definitions.

Define the words Ln = an−1,1an−1,2 . . . an−1,qn−1−1 and Rn = an−1,0. Observe that
they satisfy

τn(a) = LnaRn, a ∈ An+1, n ≥ 1.

Inductively, define L1,1 = L1, R1,1 = R1, and for n ≥ 1 we let

L1,n+1 = τ[1,n+1)(Ln+1)L1,n and R1,n+1 = R1,nτ[1,n+1)(Rn+1). (38)

Hence, we have

τ[1,n+1)(a) = L1,naR1,n, a ∈ An+1, n ≥ 1.

PROPOSITION 4.19. A minimal Ferenczi subshift has a unique asymptotic class.

Proof. Let (XW , S) be a minimal Ferenczi subshift generated by the directive sequence
τW = (τn : A∗n+1 → A∗n)n≥0 given by (17). For n ≥ 0 recall the definition of the subshift

X
(n)
τW given in §2.2.3 and that A1 is the set of values of the sequence (an,i : n ≥ 0,

0 ≤ i < qn).
For n ≥ 1 and a �= b in An, we have that the word τ[0,n)(a) is not a suffix of the word

τ[0,n)(b). Indeed, this is clear if n = 1. If n ≥ 1, by (38) we have

τ[0,n+1)(c) = τ0(L1,n)01cτ0(R1,n), c ∈ An+1, (39)

from which the claim follows easily.
As (XW , S) is minimal and aperiodic, there exists at least one asymptotic class. Let

z and z′ be two points in this asymptotic class such that z0 �= z′0 and z(0,+∞) = z′(0,+∞).
Without lost of generality, we assume that z0 = 0 and z′0 = 1. By Lemma 3.6, there exist
pairs (k, y) and (k′, y′) with y, y′ ∈ X(1)τW , 0 ≤ k < |τ0(y0)|, 0 ≤ k′ < |τ0(y

′
0)| and

z = Skτ0(y), z′ = Sk′τ0(y
′).
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As z0 = 0 and τ0(c) = 01c for c ∈ A1, we deduce that k = 0 and from Lemma 4.18 we
obtain C1

τ0
(0, y) = C1

τ0
(k′, y′). Define a = y0 and b = y′0. The fact that z(0,+∞) = z′(0,+∞)

and z′0 = 1 implies that a < b.
Now fix n ≥ 0. By Lemma 3.6, there exist pairs (j , x) and (j ′, x′) with x, x′ ∈ X(n+1)

τW ,
0 ≤ j < |τ[0,n+1)(x0)|, 0 ≤ j ′ < |τ[0,n+1)(x

′
0)| and

z = Sj τ[0,n+1)(x), z′ = Sj ′τ[0,n+1)(x
′).

From Lemma 4.18 we have C1
τ[0,n+1)

(j , x) = C1
τ[0,n+1)

(j ′, x′). Let s = C1
τ[0,n+1)

(j , x), so that
z[1,s) = 1aτ0(y[1,m)) = z′[1,s) for somem ∈ N. This, together with (39), implies that x0 = a
and x′0 = b. We conclude that

z[1,s) = z′[1,s) = 1aτ0(R1,n).

As R1,n is a prefix of R1,n+1 for each n ≥ 1 and (|R1,n|)n≥1 is increasing, there exists a
one-sided sequence u = (un)n∈N in {0, 1}N such that

u[0,|τ0(R1,n)|) = τ0(R1,n), n ≥ 1.

We deduce that z[a+1,+∞) = z′[a+1,+∞) = u, which does not depend on the points z and z′
but only on τW . This proves the result.

For a minimal topological dynamical system (X, T ), the existence of a unique
asymptotic class implies that the automorphism group Aut(X, T ) is trivial, that is,

Aut(X, T ) = 〈T 〉.
Indeed, let x ∈ X be an element in the unique asymptotic class and φ be an element in

Aut(X, T ). As the map φ sends asymptotic classes to asymptotic classes, we deduce that
φ(x) is asymptotic to T mx for some m ∈ Z. From [DDMP16, Lemma 2.3] we have that
φ = T m, and we conclude that Aut(X, T ) = 〈T 〉.

Therefore, Proposition 4.19 implies the following.

COROLLARY 4.20. [GH16b, Theorem 1.2] The automorphism group of a minimal
Ferenczi subshift is trivial.

5. Measurable eigenvalues of minimal Ferenczi subshifts
In this section we further develop the spectral study of minimal Ferenczi subshifts initiated
in §4.8 for continuous eigenvalues by analyzing their measurable eigenvalues.

We first give a general necessary condition for a complex number to be a measurable
eigenvalue of certain S-adic subshifts. This is stated in Proposition 5.1. Then, we show that,
under the hypothesis of exact finite rank, all measurable eigenvalues of minimal Ferenczi
subshifts are continuous, thus improving previous known results [GH16a, Theorem 4.1].
This is stated in Corollary 5.4.

5.1. The Veech criterion for S-adic subshifts. We now give a general necessary
condition for a complex value to be a measurable eigenvalue with respect to an ergodic
invariant probability measure of some S-adic subshifts. Such a condition, originally due
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to Veech [Vee84] in the context of interval exchange transformations, was stated as the
Veech criterion in several articles [AD16, AF07, Vee84] and was crucial in order to obtain
generic weak mixing for interval exchange transformations and translation flows in certain
Veech surfaces.

For convenience, we state and prove here the necessary condition in the context of
S-adic subshifts following the lines of the original proof of the Veech criterion. As we only
consider minimal Cantor systems of finite topological rank, there is no loss in generality
[DM08]. See [DFM19] for a finer analysis of measurable eigenvalues in the more general
context of minimal Cantor systems.

PROPOSITION 5.1. Let τ = (τn : A∗n+1 → A∗n)n≥0 be an everywhere growing and recog-
nizable directive sequence and μ be an ergodic invariant probability measure of (Xτ , S).
Assume that τ is clean with respect to μ and let Aμ be the set of letters such that (31)
holds. Suppose that:
(i) there exists K > 0 such that |τ[0,n)|/〈τ[0,n)〉 ≤ K for all large enough n; and

(ii) there exists δ > 0, and, for all large enough n, a non-empty word
un ∈ A∗0 and indices cn, dn with 0 ≤ cn < dn ≤ mina∈Aμ

|τ[0,n)(a)| which satisfy
|un| ≥ δ mina∈Aμ

|τ[0,n)(a)| and

τ[0,n)(a)[cn,dn) = un, a ∈ Aμ.

If λ = exp(2πiα) is a measurable eigenvalue of (Xτ , S) with respect to μ, then

lim
n→+∞|||αhn(a)||| = 0, a ∈ Aμ. (40)

Proof. Let f : Xτ → C, f �= 0 be a measurable eigenfunction of (Xτ , S) with respect
to μ with eigenvalue λ. We can assume |f | = 1μ-almost everywhere by ergodicity.
Remember the definition of the sets Bn(a) for a ∈ An and Bn in (8).

Let c > 0 be such that (31) holds and 0 < ε < c/3K . From now on, we choose n large
enough such that items (i) and (ii) hold. We set

Bn,μ =
⋃
a∈Aμ

Bn(a).

Define tn = cn + �(dn − cn)/4�, �n = �(dn − cn)/2� and An,μ =⋃tn+�n−1
k=tn SkBn,μ. See

Figure 1.
Observe that the union which defines An,μ is disjoint and that

μ(An,μ) ≥ (dn − cn)μ(Bn,μ)/2 ≥ δ min
a∈Aμ

|τ[0,n)(a)|μ(Bn,μ)/2 ≥ δc/2.

Claim 5.1.1. For all large enough n there exists some value kn ∈ N and some complex
value wkn ∈ C such that tn ≤ kn < tn + �n and∫

SknBn,μ

|f − wkn | dμ ≤ ε2μ(Bn,μ).

Indeed, by Lusin’s theorem there exists a compact set C ⊆ Xτ such that f |C is
uniformly continuous and μ(C) ≥ 1− χ , where χ = ε2δc/8.
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FIGURE 1. A centered τ[0,n)-representation of a point x in Bn(a), a ∈ Aμ. The white point represents the zero
coordinate of x. The green part represents the word un[tn ,tn+�n).

Choose kn such that μ(SknBn,μ ∩ C) = maxtn≤k<tn+�n μ(SkBn,μ ∩ C). Then

μ(SknBn,μ ∩ C)
μ(Bn,μ)

≥
∑tn+�n−1
k=tn μ(SkBn,μ ∩ C)

�nμ(Bn,μ)
= μ(An,μ ∩ C)

μ(An,μ)
≥ μ(An,μ)− χ

μ(An,μ)
,

so that

μ(SknBn,μ ∩ (Xτ \ C))/μ(Bn,μ) ≤ χ/μ(An,μ) ≤ ε2/4.

On the other hand, by the choice of tn, �n and because τ is everywhere growing, we
have diam(SknBn,μ)→ 0 as n→+∞. Hence, for all large enough n we have

sup
x,y∈SknBn,μ∩C

|f (x)− f (y)| < ε2/2.

Put wkn = f (yn) for some point yn ∈ SknBn,μ ∩ C, then∫
SknBn,μ

|f − wkn | dμ =
∫
SknBn,μ∩C

|f − wkn | dμ+
∫
SknBn,μ∩(Xτ \C)

|f − wkn | dμ

≤ ε
2

2
μ(Bn,μ)+ 2μ(SknBn,μ ∩ (Xτ \ C))

≤ ε2μ(Bn,μ),

which proves the claim.
Put w′n = wknλ−kn . We deduce that∫

Bn,μ

|f − w′n| dμ =
∫
SknBn,μ

|f − wkn | dμ ≤ ε2μ(Bn,μ). (41)

The Markov inequality and (41) imply

μ({x ∈ Bn,μ : |f (x)− w′n| ≥ ε}) ≤ εμ(Bn,μ). (42)

To show that (40) holds, it suffices to prove the following.

Claim 5.1.2. Let a ∈ Aμ. Then, for all large enough n, there exists x ∈ Bn(a) such that

|f (x)| = 1, |f (x)− w′n| < ε and |f (Shn(a)x)− w′n| < ε.
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Let a ∈ Aμ. We begin by observing that

μ(Bn \ Bn,μ)

μ(Bn,μ)
=

∑
b∈A\Aμ

μ(T n(b))/|τ[0,n)(b)|∑
a∈Aμ

μ(T n(a))/|τ[0,n)(a)| ≤
(

K

c|Aμ|
) ∑
b∈A\Aμ

μ(T n(b)).

Hence, by (31) for all large enough n we obtain

μ(Bn \ Bn,μ) < εμ(Bn,μ). (43)

Let n be large enough so that (42) and (43) hold. If the claim is not true for such n, after
neglecting a set of measure zero we have

Bn(a) ⊆ {x ∈ Bn,μ : |f (x)− w′n| ≥ ε} ∪ S−hn(a){x ∈ Bn,μ : |f (x)− w′n| ≥ ε}
∪ S−hn(a){x ∈ Bn \ Bn,μ : |f (x)− w′n| ≥ ε},

and then

μn(a) < 3εμ(Bn,μ) <
c

K
μ(Bn,μ). (44)

However, by (44) we obtain the following contradiction

μ(Bn,μ) =
∑
b∈Aμ

μn(b) =
∑
b∈Aμ

μn(b)
|τ[0,n)(b)||τ[0,n)(a)|
|τ[0,n)(b)||τ[0,n)(a)|

≤ K

|τ[0,n)(a)|
∑
b∈Aμ

μ(T n(b)) ≤ K
c
μn(a) < μ(Bn,μ),

where we used μ(T n(a)) = μn(a)|τ[0,n)(a)| ≥ c. This finishes the proof.

Remark 5.2
(1) Proposition 5.1(ii) holds, in particular, if for each n ≥ 0 and a ∈ A there exists a

prefix pn (or suffix sn) of τ[0,n)(a) and δ > 0 such that the length |pn| (or |sn|) is at
least δ〈τ[0,n)〉.

(2) In [DFM15, Example 2] the authors describe an S-adic subshift of Toeplitz type
and of exact finite rank such that exp(2πi/6) is a measurable and non-continuous
eigenvalue for the unique invariant probability measure. The associated height
vectors (hn)n≥0 satisfy

hn(a) ≡ 1(mod 6), a ∈ A, n ≥ 0.

A simple computation shows that Proposition 5.1(ii) does not hold. Therefore, the
condition given by (40) is not always necessary.

5.2. Veech criterion applied to Ferenczi subshifts. We apply Proposition 5.1 to the study
of measurable eigenvalues of minimal Ferenczi subshifts. We first need the following
lemma to fulfill item (ii).

LEMMA 5.3. Let (XW , S) be a minimal Ferenczi subshift and τW = (τn : A∗n+1 →
A∗n)n≥0 be the directive sequence given in (17). Then, for all n ≥ 1, there exists a common
prefix pn of the words τ[0,n)(a), a ∈ An, satisfying
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|pn| ≥ min1≤i≤� ai + 1
3(max1≤i≤� ai + 1)

〈τ[0,n)〉.

Proof. Let m = min1≤i≤� ai + 1 and M = max1≤i≤� ai + 1. Define p1 = 01m−1 and
pn = τ0(L1,n−1), n ≥ 2 as in (38). By definition, pn is a prefix of τ[0,n)(a) for
each a ∈ An, n ≥ 1. As each morphism τn, n ≥ 1, is of constant length, we have
|L1,n+1| = |L1,n| + |Ln+1||τ[1,n+1)|, n ≥ 1. Observe that |Ln| = qn−1 − 1 for n ≥ 1, so
that |L1,1| = q0 − 1 ≥ (q0 + 1)/3 = |τ[1,2)|/3.

Inductively, if |L1,n| ≥ |τ[1,n+1)|/3, we obtain

|L1,n| + |Ln+1||τ[1,n+1)| ≥ |τ[1,n+1)|
3

+ (qn − 1)|τ[1,n+1)| ≥ |τ[1,n+1)|
3

(qn + 1)

= |τ[1,n+2)|
3

,

where we used qn − 1 ≥ qn/3. This shows that |L1,n+1| ≥ |τ[1,n+2)|/3, n ≥ 0.
Finally, we deduce |p1| = m ≥ m/3M〈τ0〉 and

|pn| ≥ m|L1,n−1| ≥ m |τ[1,n)|
3
≥ m

3M
〈τ[0,n)〉, n ≥ 2.

For a minimal Ferenczi subshift (XW , S) with unique invariant probability measure μ,
we set dWμ

= |Aμ|, where Aμ is defined as in §4.2. A direct application of Lemmas 3.8,
5.3 and Proposition 5.1 allows us to obtain the following.

COROLLARY 5.4. Let (XW , S) be a minimal Ferenczi subshift and μ be the unique
invariant probability measure.
(1) If dWμ

= dW (i.e., if τW is of exact finite rank), then all measurable eigenvalues of
(XW , S) with respect to μ are continuous.

(2) If dWμ
≥ 2, then the system (XW , S) has no irrational measurable eigenvalues with

respect to μ.

Proof. Let λ = exp(2πiα) be a measurable eigenvalue of (XW , S) with respect to μ and
τW be the directive sequence given by (17). We see that, by Lemmas 5.3 and 3.8, all
hypotheses of Proposition 5.1 are verified.

(1) If dWμ
= dW , Proposition 5.1 implies that

|||αhn||| → 0 (45)

as n→+∞. Then, from Lemma 3.8, there exist two distinct letters a, b in AW such that

|||α(hn(a)− hn(b))||| = |||α(a − b)||| → 0

as n→+∞. We deduce that α must be rational. Moreover, if α = p/q is rational, then
from (45) the integer q must divide all coordinates of hn for all large enough n. We
conclude that λ is a continuous eigenvalue from §4.8.

(2) If dWμ
≥ 2, there exist two distinct elements a, b in AW which satisfy

|||α(a − b)||| = 0.

In particular, α must be rational.
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Thus, we have showed that measurable and continuous eigenvalues coincide in the case
where dWμ

= dW . However, when dWμ
�= dW , we can obtain different behaviors that we

comment in the following section.

5.3. Various examples exhibiting different spectral behaviors. In this section, we make
precise the situation where dWμ

�= dW . In this case, we give explicit examples of minimal
Ferenczi subshifts (XW , S) having a prescribed topological rank dW , a prescribed quantity
dWμ

with dWμ
�= dW , with no non-trivial continuous eigenvalue, but with any rational

measurable eigenvalue λ = exp(2πi/p).
However, when dWμ

= 1, we were not able to show that there are no irrational
measurable eigenvalues. We leave this as an open question.

5.3.1. A realization result on measurable eigenvalues with rank constraints.

PROPOSITION 5.5. Let p be a prime number and d , d ′ be such that 1 ≤ d ′ < d. Then,
there exists a minimal Ferenczi subshift (XW , S) with unique invariant probability
measure μ such that rank(XW , S) = d , dWμ

= d ′, the system (XW , S) is topologically
weakly mixing and λ = exp(2πi/p) is a measurable eigenvalue of (XW , S).

Proof. Consider any set of non-negative numbers A = {ai : 1 ≤ i ≤ d} such that p
divides ai + 1, 1 ≤ i ≤ d ′ and ad − ad ′ = 1. Put A0 = {0, 1} and An = A if n ≥ 1. Let
v = aj∗ for some d ′ < j∗ ≤ d and define the words

U = a1a2 . . . ad ′

W = ad ′+1 . . . aj∗−1aj∗+1 . . . ad

in A∗. Consider any increasing function g : N→ Z>0 such that
∑∞
n=0(1/g(n)) < +∞.

Let τW = (τn : A∗n+1 → A∗n)n≥0 be the directive sequence given by

τn(a) = Upg(n)Wpvp−1av, a ∈ A, n ≥ 1. (46)

Theorem 3.7 implies that τW defines a minimal Ferenczi subshift (XW , S). Moreover,
Corollary 4.9 implies that rank(XW , S) = d . Let (T n)n≥0 be the nested sequence of CKR
partitions of XW given by (8) and μ be the unique invariant probability measure of
(XW , S).

Observe that the vector (fn(a))a∈A associated with the morphism τn, as defined by
(20), is given by

fn(ai) =
{
pg(n) if 1 ≤ i ≤ d ′,
p if d ′ < i ≤ d .

From (26) the composition matrix of the morphism τn is given by

Mτn = I + fn · u,

where I is the identity matrix indexed by A and u is the row vector of ones in RA.

CLAIM 5.5.1. The system (XW , S) is topologically weakly mixing and dWμ
= d ′.
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Proof. As ad − ad ′ = 1, we have that the system (XW , S) is topologically weakly mixing.
It remains to show that Aμ = {ai : 1 ≤ i ≤ d ′}. From (24), there exists a constant K

such that for all a, b ∈ A and n ≥ 0 we have

hn+1(b) =
∑
c∈A

hn(c)Mτn(c, b) ≤ Khn(a)
∑
c∈A

Mτn(c, b) ≤ K|A|(pg(n)+ 1)hn(a),

and

hn+1(b) =
∑
c∈A

hn(c)Mτn(c, b) ≥ K−1hn(a)
∑
c∈A

Mτn(c, b) ≥ K−1|A|pg(n)hn(a).

Let i ∈ {1, . . . , d ′}, j ∈ {d ′ + 1, . . . , d}, b ∈ A and n ≥ 0. From the above, we obtain

μ(T n(ai)) = hn(ai)μn(ai) = hn(ai)
∑
b∈A

Mτn(ai , b)μn+1(b)

≥ pg(n)hn(ai)
∑
b∈A

μ(T n+1(b))

hn+1(b)
≥ pg(n) min

b∈A
hn(ai)

hn+1(b)

≥ pg(n)

K|A|(pg(n)+ 1)
≥ 1

2K|A|
and

μ(T n(aj )) = hn(aj )μn(aj ) = hn(aj )
∑
b∈A

Mτn(aj , b)μn+1(b)

≤ (p + 1)hn(aj )
∑
b∈A

μ(T n+1(b))

hn+1(b)
≤ (p + 1) max

b∈A
hn(aj )

hn+1(b)

≤ K(p + 1)
|A|pg(n) → 0

as n→+∞. This shows that Aμ = {ai : 1 ≤ i ≤ d ′} and proves the claim.

Let λ = exp(2πi/p). We define a measurable eigenfunction f as a limit of the sequence
(fn)n≥0 defined by

fn(x) = exp(2πij/p) if x ∈ SjBn(a), 0 ≤ j < hn(a), a ∈ A.

Define

An = {x ∈ XW : fn+1(x) �= fn(x)}, n ≥ 0

and

tn = |τ[0,n)(U
pg(n+1))|, n ≥ 0.

Observe, from (26), that p divides hn(a) for all a ∈ Aμ. Moreover, fn+1(x) = fn(x)
whenever x belongs to ⋃

1≤i≤d ′

⋃
0≤j<tn

SjBn+1(ai).
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Consequently, we deduce

An ⊆
( ⋃

1≤i≤d ′

⋃
tn≤j<hn+1(ai )

SjBn+1(ai)

)
∪

( ⋃
d ′<j≤d

T n+1(aj )

)
.

Let 1 ≤ i ≤ d ′. From (24), we have

hn+1(ai)− tn = hn(ai)+ p
∑

d ′<j≤d
hn(aj ) ≤ pK|A|hn(ai).

From the previous computations, we obtain

μ(An) ≤ pK|A|
∑

1≤i≤d ′
μn+1(ai)hn(ai)+

∑
d ′<j≤d

μ(T n+1(aj ))

≤ pK|A|
∑

1≤i≤d ′
hn(ai)

hn+1(ai)
μ(T n+1(ai))+ K(p + 1)

pg(n+ 1)

≤ K2

g(n)
+ K(p + 1)
pg(n+ 1)

≤ 2K2(p + 1)
g(n)

and consequently
∑
μ(An) converges. The Borel–Cantelli lemma implies that

μ(lim supn→+∞ An) = 0. Hence, the sequence (fn)n≥0 converges μ-almost everywhere
to some function f.

Moreover, if x is not in
⋃
a∈A Shn(a)−1Bn(a), then fn(Sx) = λfn(x). As μ(

⋃
a∈A

Shn(a)−1Bn(a))→ 0 as n→+∞, we conclude that f is a measurable eigenfunction with
eigenvalue λ of (XW , S) with respect to μ.

5.3.2. An example with dWμ
= 1 with no non-continuous rational eigenvalue. We

now present an example in the situation where dWμ
= 1 and every measurable rational

eigenvalue is continuous. For this purpose, we use the following useful result of [DFM19,
§4]. Note that we have adapted this result to fit the context of S-adic subshifts.

LEMMA 5.6. [DFM19, Corollary 16] Let τ = (τn : A∗n+1 → A∗n)n≥0 be a proper, prim-
itive and recognizable directive sequence and let μ be an ergodic invariant probability
measure of (Xτ , S). Assume that τ is clean with respect to μ and let Aμ be the set of
letters such that (31) holds.

Let λ be a complex number of modulus 1. If for all a, b ∈ Aμ,∣∣∣∣ ∑
w∈Wm,n(a,b) λ

〈�(w),hm〉
∣∣∣∣

|τ[m,n)(b)|a → 1 as m→+∞ uniformly for n > m, (47)

then λ is an eigenvalue of (Xτ , S) with respect to μ, where:
• hm = (|τ[0,m)(a)| : a ∈ Am) for m > 0;
• the set Wm,n(a, b) is defined by

{τ[m,n)(b)[i,|τ[m,n)(b)|) : i occurrence of a in τ[m,n)(b)};
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• for a word w ∈ A∗m,

�(w) = (|w|a : a ∈ Am).

The converse is also true, up to a contraction of the directive sequence τ .

Let us be precise here that a sequence (am,n)m,n≥0 converges to � as m→+∞
uniformly for n > m if for every ε > 0 there exists m0 ≥ 0 such that for all n > m ≥ m0

we have

|am,n − �| < ε.

Let a, b be two positive integers with a > b and let τW = (τn : A∗n+1 → A∗n)n≥0 be
the directive sequence given by

τn(a) = anban and τn(b) = anban−2ba, n ≥ 1. (48)

Theorem 3.7 implies that τW defines a minimal Ferenczi subshift (XW , S).

PROPOSITION 5.7. The minimal Ferenczi subshift (XW , S) defined by (48) is such that
dWμ
= 1 and every rational measurable eigenvalue is continuous, for the unique ergodic

measure μ of (XW , S).

Proof. We say that a word w ∈ {a, b}∗ consists of a-blocks if we can write

w = B0(w)bB1(w)b . . . bBb(w)−1(w), (49)

where b(w) ≥ 2 and Bj (w) is a non-trivial power of a for 0 ≤ j < b(w).
Definew(m, n) = τ[m,n)(a) andw′(m, n) = τ[m,n)(b) for n > m ≥ 0. It is easy to check

that w(m, n) and w′(m, n) consist of a-blocks. We use the notation introduced in (49) for
these words.

We have Aμ = {a}. Indeed, the composition matrix Mτn of the morphism τn is

Mτn =
(

2n 2n− 1
1 2

)
.

Hence, from (6) and (7), we obtain

μ(T n(b)) = hn(b)μn(b) = hn(b)(μn+1(a)+ 2μn+1(b))

= hn(b)
(
μ(T n+1(a))

hn+1(a)
+ 2

μ(T n+1(b))

hn+1(b)

)
≤ 2

2n+ 1
,

where we used hn+1(a) = 2nhn(a)+ hn(b) ≥ (2n+ 1)hn(b) by (23) and, analogously,
hn+1(b) ≥ (2n+ 1)hn(b). Thus, dWμ

= 1 and, from [BKMS13, Proposition 5.1], we
deduce

|w(m, n)|a/|w(m, n)| → 1 as m→+∞ uniformly for n > m. (50)
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Suppose that p is a prime number and that λ = exp(2πi/p) is a rational eigenvalue of
(XW , S) with respect to μ that is not continuous. From (47) and (50), we should have∣∣∣∣ ∑

w∈Wm,m+2(a,a) λ
〈�(w),hm〉

∣∣∣∣
|w(m, m+ 2)| → 1 as m→+∞. (51)

Let us show this is not the case. Letm ≥ 0. From the definition of the setWm,m+2(a, a)
and (49), we have

∑
w∈Wm,m+2(a,a)

λ〈�(w),hm〉 =
b(w(m,m+2))−1∑

j=0

|Bj (w(m,m+2))|−1∑
i=0

λ〈�(uj ,i ),hm〉,

where uj ,i = w(m, m+ 2)[(∑j−1
k=0 |Bk(w(m,m+2))|)+j+i,|w(m,m+2))|.

On the other hand, from (23) we have hm(b) = hm(a)+ (b − a), therefore

〈�(uj ,i ), hm〉 = hm(a)
( j−1∑
k=0

|Bk(w(m, m+ 2))| + i
)
+ hm(b)j

= hm(a)
( j−1∑
k=0

|Bk(w(m, m+ 2))| + i + j
)
+ (b − a)j .

As Aμ = {a}, the Veech criterion (40) implies that p divides hm(a) for all large enough
m. Moreover, as λ is a non-continuous eigenvalue, p does not divide hm(b) for any m ≥ 0
and, hence, p does not divide b − a. Denote by (b − a)−1 the inverse of b − a(mod p).
For each 0 ≤ � < p, let r� be such that 0 ≤ r� < p and r� ≡ � · (b − a)−1(mod p).

For all large enough m we have

∑
w∈Wm,m+2(a,a)

λ〈�(w),hm〉 =
b(w(m,m+2))−1∑

j=0

|Bj (w(m, m+ 2))| exp(2πi(b − a)j/p)

=
p−1∑
�=0

a� exp(2πi�/p), (52)

with

a� =
�b(w(m,m+2))/p�−1∑

j=0

|B(w(m, m+ 2))jp+r� |. (53)

From the shape of the images of the morphism τm (48) and the fact that τ[m,m+2)(a)

belongs to the free monoid {τm(a), τm(b)}∗, we have

|Bj (w(m, m+ 2)| − |Bj ′v(w(m, m+ 2))| ≤ m+ 2, 0 ≤ j , j ′ < b(w(m, m+ 2)).
(54)

This, together with (53) implies that

a� − min
0≤�′<p

a�′ ≤ (m+ 2)
b(w(m, m+ 2))

p
, 0 ≤ � < p. (55)
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From (52) and (55), we have∣∣∣∣ ∑
w∈Wm,m+2(a,a) λ

〈�(w),hm〉
∣∣∣∣

|w(m, m+ 2)| ≤ (m+ 2)
b(w(m, m+ 2))
|w(m, m+ 2)| , (56)

where we used the fact that
∑p−1
�=0 exp(2πi�/p) = 0.

By computing τm ◦ τm+1(a), one can easily check that the number of a-blocks of
τ[m,m+2)(a) is b(w(m, m+ 2)) = 2m+ 5. Then we deduce

(m+ 2)
b(w(m, m+ 2))
|w(m, m+ 2)| =

(m+ 2)(2m+ 5)
(2m+ 1)(2m+ 3)

→ 1
2

as m→+∞.

This contradicts (51) and finishes the proof.
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