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1. Introduction

The aim of this paper is to study qualitative properties such as symmetry and
monotonicity of positive weak solutions to the quasilinear elliptic problems involving
Hardy potential: ⎧⎪⎨

⎪⎩
−div (A(|∇u|)∇u) = ϑ uq

|x|p + g(x, u) in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

(1.1)

where Ω is a C2-bounded domain in R
N , 0 ∈ Ω, ϑ � 0, p ∈ (1, N), q ∈ (0, p).

The interest in this class of problems in recent years is related to the possibility
of modelling wide classes of elliptic problems. For instance, taking into account
the results contained in [4–6] we know that if the real function A : R

+ → R
+ is

assumed to be of class C1(R+) and fulfills the following

• −1 < inf
t>0

tA′(t)
A(t)

=: mA � MA := sup
t>0

tA′(t)
A(t)

< +∞, (1.2)

we can consider problems in which the differential operator satisfies ellipticity and
monotonicity conditions, not necessarily of power type. On the other hand, the
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Symmetry for quasilinear problems 1859

choice A(t) = tp−2 + btq−2, b � 0 leads to the well-known classical semilinear ellip-
tic problem [14, 15, 17] for b = 0, or to double-phase type problems (see [8–12,
19, 24]). Such problems are therefore particular cases contained in the more gen-
eral setting that we consider here. We shall borrow some ideas from [13, 15] but,
contrary to the first feeling, the adaptation of such techniques is a quite delicate
issue, once we want to deal with a real general class of operators. In the following
we will also suppose that

• ∃c1 > 0 and ∃K � 1 : ∀η ∈ R
Nwith |η| � K, |A(|η|)η| � c1|η|p−1; (1.3)

• ∃c2 > 0 : ∀η ∈ R
N , A(|η|)|η|2 � c2|η|p; (1.4)

• If lim inf
t→0+

A(t) = 0, ∃δ > 0 : A(t) is non-decreasing on I0 := (0, δ). (1.5)

We remark that hypothesis (1.3), that we prefer to state in this way, is equivalent
to request that

∃A,B ∈ R
+ : ∀η ∈ R

N , |A(|η|)η| � A+B|η|p−1.

The position of the origin with respect to the domain is connected to the presence
of the Hardy potential and it is crucial already to prove existence results (see [7]
and the references therein). Regarding the nonlinear term g ∈ C1(Ω̄ × R) we will
suppose that:

(g1) g(x, · ) is a locally Lipschitz continuous, uniformly with respect to x, i.e. for
every Ω′ ⊂ Ω and for every M > 0, there is a positive constant L = (M,Ω′)
such that for every x ∈ Ω′ and every u, v ∈ [0,M ], we have that

|g(x, u) − g(x, v)| � L|u− v|;

(g2) g(· , u) is locally Lipschitz continuous, uniformly with respect to u.

(g3) g(· , u) is non-decreasing w.r.t. the x1-direction in the set Ωλ := {x =
(x1, . . . , xN ) ∈ Ω : x1 < λwith λ < 0};

(g4) g(x, · ) > 0 is positive and, more precisely, g(x, u) > 0 in Ω′ for every Ω′ ⊂ Ω
and for every u > 0.

The monotonicity assumption on g, with respect to the first variable, is necessary
for the applicability of the moving plane method; this is well-known already in the
case of non singular source terms. We refer to [3, 25, 26] for a discussion about
such a condition. In this setting the notion of solution has to be understood in the
weak sense as in the next definition

Definition 1.1. We say that u is a weak solution to problem (1.1) if u ∈W 1,p
0 (Ω),

g(·, u(·)) ∈ L1(Ω) and∫
Ω

A(|∇u|)(∇u,∇ϕ) dx=ϑ
∫

Ω

uq

|x|pϕdx+
∫

Ω

g(x, u)ϕdx, ∀ϕ∈W 1,p
0 (Ω) ∩ L∞(Ω).
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Remark 1.2. We do not prefer to discuss here the wide literature regarding the
L∞-boundedness of the solutions, that is a well-known issue e.g. in the critical or
sub-critical case. Once we reduce to deal with bounded far from the origin W 1,p

0 (Ω)
solutions, by [16, 29], we get that u ∈ C1,α

loc (Ω\{0}); furthermore, supposing that
Ω is smooth, the C1,α

loc (Ω̄\{0}) regularity follows by [23] while, from [22], it also
follows that u ∈ C2(Ω\(Zu ∪ {0})), where

Zu = {x ∈ Ω : ∇u(x) = 0}.
Moreover, arguing as in [7], we have that ui ∈W 1,2

loc (Ω\{0}) for p ∈ (1, 3) and ui ∈
W 1,q

loc (Ω\{0}) for every q < p−1
p−2 and p � 3.

Our result will be obtained by means of the moving plane method; this technique
is mostly used in this topic and it goes back to the seminal papers of Alexandrov
[1] and Serrin [28] and the celebrated papers [2, 21].

This tool was adapted to the case of the p-Laplacian operator in bounded domains
firstly in [14] for the case 1 < p < 2 and, later on, in [15] for the case of positive
nonlinearities and p > 2. In this paper we will apply the moving plane technique
by means of the achievement of a weak comparison principle in small domains and
the strong comparison principle; this approach is more close to those introduced in
[14, 15] and goes back to the illuminating papers [2, 21].

Such a technique can be performed in general convex domains providing partial
monotonicity results near the boundary. For simplicity of exposition and without
loss of generality, we assume directly in all the paper that Ω is a strictly convex
domain in the x1-direction and symmetric with respect to the hyperplane {x1 = 0}.
In this setting, our main result is the following:

Theorem 1.3. Let u ∈ C1(Ω̄\{0}) be a weak solution to (1.1). Let Ω be strictly
convex with respect to x1-direction and symmetric with respect to the hyperplane
{x1 = 0}. Then it follows that u is symmetric with respect to the hyperplane
{x1 = 0} and non-decreasing in the x1-direction in Ω ∩ {x1 < 0}.

Moreover, if Ω is a ball centred at the origin, then u is radially symmetric with
∂u
∂r (r) < 0 for r �= 0.

To prove theorem (1.3) we have to face some difficulties, mainly related to the
nonlinear degenerate nature of the operator. In particular, in order to carry on
the procedure, we need to study the asymptotic behaviour of the solution near
to zero. This task was also faced in [25]. However, the presence of the distorsion
A(·), causes that we can not repeat the same argument of [25]. Furthermore, when
proving the weak comparison principle in small domains, we have to overcome the
difficulty arising from many homogeneity problems, that the reader will appreciate
during the reading. Finally, note that, taking into account the literature regarding
the existence of the solutions, we choose a setting of assumptions that involves also
cases when the nonlinearity is not Lipschitz continuous at zero.

The paper is organized as follows: in next section we introduce some preliminary
tools and results such as summability properties of the second derivatives of the
solutions. Furthermore we prove that the solution u blow-up near the origin and we
develop the proof of the weak comparison principle for small domains. The main
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result, namely theorem (1.3), is proved in the last section. Finally, for the readers
convenience, we add the proofs of some standard results in the appendix.

2. Preliminaries and useful results

In this section, briefly, we enclose some definitions, results and remarks that it will
be useful in the rest of the paper. From now on, in order to get a readable notation,
generic numerical constant will be denoted by c and will be allowed to vary within
a single line or formula. Moreover we denote with f+ := max{f, 0}.

Remark 2.1. With respect to the setting (1.2)–(1.4), we observe that:

• From [5, lemma 4.2], calling c̄ := (1 + min{0,mA}) > 0, one has that

[A(|ξ|)ξ −A(|η|)η] · [ξ − η] � c̄|ξ − η|2
∫ 1

0

A(|η + s(ξ − η)|) ds, (2.1)

for every ξ, η ∈ R
N . Using (1.4), we get

[A(|ξ|)ξ −A(|η|)η] · [ξ − η] � c2c̄|ξ − η|2
∫ 1

0

|η + s(ξ − η)|p−2 ds

and, arguing as in [13, lemma 2.1], one has that for every ξ, η ∈ R
N

[A(|ξ|)ξ −A(|η|)η] · [ξ − η] � c2c̄(|ξ| + |η|)p−2|ξ − η|2. (2.2)

• In [5, proposition 4.1], it is already proved that

A(1)min{tmA , tMA} � A(t) � A(1)max{tmA , tMA}. (2.3)

Since mA > −1, by (2.3) there exists η ∈ [0, 1) such that mA + η > 0; hence

lim
t→0

tηA(t) = 0 (2.4)

and, in particular limt→0 tA(t) = 0.
Then, if 0 < t < K there exists a constant CK := C(K) > 0 such that

|tA(t)| � CK . (2.5)

Moreover, j(t) := tA(t) is a non-decreasing function on [0,+∞) since

j′(t) = A(t) + tA′(t) = A(t)
[
1 +

tA′(t)
A(t)

]
� A(t)(1 +mA) � 0.

• If mA � 0, by (1.2), one has

tA′(t)
A(t)

� mA ⇒ A′(t) � mAA(t)
t

� 0.

Then,

if mA � 0, A(t) is a non-decreasing function on (0,+∞). (2.6)
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• For t ∈ R
+ and t � K, using (1.3) and (2.3), we get

A(1)tmA � A(t) � c1t
p−2 ⇒ tmA−p+2 � c1

A(1)
.

Hence, we note that (mA − p+ 2) has to be necessarily negative, i.e.

mA � p− 2. (2.7)

Analogously, for t ∈ R
+ and t � K, using (1.4) and (2.3), we get

c2t
p−2 � A(t) � A(1)tMA ⇒ tp−2−MA � A(1)

c2
.

Hence, we note that (p− 2 −MA) has to be necessarily negative, i.e.

MA � p− 2. (2.8)

The following theorems are devoted to obtain some summability properties of
the second derivatives and the gradient of solutions to (1.1).

Theorem 2.2. Assume that Ω is a bounded smooth domain and 1 < p < N .
Consider u ∈ C1,α

loc (Ω̄\{0}) ∩ C2(Ω\(Zu ∪ {0})) a solution to (1.1), where g(·, u) ∈
W 1,∞(Ω) and g(x, ·) ∈W 1,∞(R). We have

∫
E

A(|∇u|)|∇ui|2
|x− y|γ |ui|β dx � C ∀i = 1, . . . , N

for any E � Ω\{0} and uniformly for any y ∈ E, with

C := C(γ,mA,MA, β, g, ‖∇u‖∞, E)

for 0 � β < 1 and γ < (N − 2) if N � 3 (γ = 0 if N = 2).
Moreover, if we also assume that g is positive in Ω in the sense of (g4), we have

that ∫
Ω̃

A(|∇u|)|∇ui|2
|x− y|γ |ui|β dx � C ∀i = 1, . . . , N.

where Ω̃ is a compact such that Ω̃ ⊂ Ω̄\{0}.

Remark 2.3. As showed in [7, remark 4.4], if g is a positive function, the set Zu

is such that |Zu| = 0.

Theorem 2.4. Let u ∈ C1,α(Ω\{0}) ∩ C2(Ω\(Zu ∪ {0})) be a solution to (1.1) with
g(·, u) ∈W 1,∞(Ω) and g(x, ·) ∈W 1,∞(R) and g(x, u) positive in the sense of (g4)
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in B2ρ(x0) ⊂ Ω\{0}. Then∫
Bρ(x0)

1
(A(|∇u|))αr

1
|x− y|γ dx � C

for any y ∈ Bρ(x0), with α := p−1
p−2 if p > 2 and α := mA+1

mA
if p ∈ (1, 2), r ∈ (0, 1),

γ < N − 2 if N � 3, γ = 0 if N = 2 and

C = C(γ, η, g, ||∇u||∞, ρ, x0, α,MA, c2).

If Ω is a smooth domain and g is nonnegative in Ω∫
Ω̃

1
(A(|∇u|))αr

1
|x− y|γ dx � C.

where Ω̃ is a compact such that Ω̃ ⊂ Ω̄\{0} and y ∈ Ω̃.

Remark 2.5. Even if we consider a solution to the problem (1.1), the proof of
theorems 2.2 and 2.4 repeats verbatim the arguments exploited in [7, theorems 4.2,
4.6, 4.8].

Assume that Ω̃ � Ω\{0}. We recall the definition of weighted Sobolev space
H1,2

ρ (Ω̃).

Definition 2.6. Let ρ, ρ−1 ∈ L1(Ω). The space H1,2
ρ (Ω̃) is defined as the comple-

tion of C1(Ω̃) (or C∞(Ω̃)) with the norm

‖v‖H1,2
ρ

= ‖v‖L2(Ω̃) + ‖∇v‖L2(Ω̃,ρ) , (2.9)

where

‖∇v‖2
L2(Ω̃,ρ) :=

∫
Ω̃

ρ(x)|∇v(x)|2 dx .

For a discussion on this topic we refer the reader to [31].

We also recall that H1,2
0,ρ(Ω̃) is defined as the completion of C1

c (Ω̃) (or C∞
c (Ω̃))

under the norm

‖v‖H1,2
0,ρ(Ω̃) = ‖∇v‖L2(Ω̃,ρ) .

Theorem 2.7 Weighted Sobolev inequality, [20]. Let ρ be a weight function such
that ∫

Ω̃

1
ρσ|x− y|γ dx � C,

with 1 < σ < p−1
p−2 if p > 2, γ < N − 2 if N � 3, γ = 0 if N = 2. Assume, in the

case N � 3, without no loss generality that γ > N − 2σ, which implies Nσ − 2N +
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2σ + γ > 0. Then, for any w ∈ H1,2
0,ρ(Ω̃), there exists a constant Cs such that

‖w‖Lq(Ω̃) � Cs ‖∇w‖L2(Ω̃,ρ) ,

for any 1 � q < 2∗(σ) where

1
2∗(σ)

=
1
2
− 1
N

+
1
σ

(
1
2
− γ

2N

)
.

In particular we prove the following Poincaré’s inequality that we will use later
considering the weight ρ = A(|∇u|). Note that this choice is possible thanks to
theorem 2.4.

Corollary 2.8. Let us consider w ∈ H1,2
0,ρ(Ω̃). Then∫

Ω̃

w2 dx � Cpp(Ω̃)
∫

Ω̃

ρ|∇w|2 dx, (2.10)

where Cpp(Ω̃) → 0 when |Ω̃| → 0.

Proof. Choose 2 < q < 2∗(σ). By Lebesgue’s spaces embedding

∫
Ω̃

w2 dx � |Ω̃| q−2
q

(∫
Ω̃

wq dx
) 2

q

,

then using theorem 2.7 we get
∫

Ω̃

w2 dx � |Ω̃| q−2
q

(∫
Ω̃

wq dx
) 2

q

� |Ω̃| q−2
q C2

s

∫
Ω̃

ρ|∇w|2 dx = Cpp(Ω̃)
∫

Ω̃

ρ|∇w|2 dx.

where Cpp(Ω̃) := |Ω̃| q−2
q C2

s . �

To state the next results we need some notations.
For a real number λ we set

Ωλ = {x ∈ Ω : x1 < λ},

xλ = Rλ(x) = (2λ− x1, x2, . . . , xN ),

uλ(x) = u(xλ)

where xλ is the reflection through the hyperplane Tλ := {x ∈ R
N : x1 = λ}.

Also let us define a := inf
x∈Ω

x1.

Let us denote with Bρ the open ball with centre 0 and radius ρ > 0. Define
φρ(x) ∈ C1

c (Ω), φρ � 0 such that

φρ =

{
1 in Ω\B2ρ,

0 in Bρ

and |∇φρ| � k

ρ
in B2ρ\Bρ, (2.11)

where k is a positive constant.
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Lemma 2.9. Let u ∈ C1(Ω̄\{0}) a solution to (1.1). Then, the set Ω\Zu does not
contain any connected component C such that C̄ ⊂ Ω.

Moreover, if we assume that Ω is a smooth bounded domain with connected
boundary, it follows that Ω\Zu is connected.

Proof. We proceed by contradiction. Let us assume that such component exists,
namely

C ⊂ Ω\Zu such that ∂C ⊂ Zu.

By remark 2.3, we get that |Zu| = 0.
For all ε > 0, let us define Jε : R

+ ∪ {0} → R by setting

Jε(t) =

⎧⎪⎨
⎪⎩
t if t � 2ε,
2t− 2ε if ε � t � 2ε,
0 if 0 � t � ε,

We consider the function

ψε = φρ(x)
Jε(|∇u|)
|∇u| χC .

We point out that supp ψε ⊂ C and ψε ∈W 1,p
0 (Ω) ∩ L∞(Ω). By using ψε as test

function in problem (1.1), since

∇ψε = ∇φρ(x)
Jε(|∇u|)
|∇u| χC + φρ(x)∇

(
Jε(|∇u|)
|∇u|

)
χC

we obtain∫
C
A(|∇u|)

(
∇u,∇

(
Jε(|∇u|)
|∇u|

))
φρ(x) dx+

∫
C
A(|∇u|)Jε(|∇u|)

|∇u| (∇u,∇φρ(x)) dx

= ϑ

∫
C

uq

|x|p
Jε(|∇u|)
|∇u| φρ(x) dx+

∫
C
g(x, u)

Jε(|∇u|)
|∇u| φρ(x) dx. (2.12)

Denoting hε(t) = Jε(t)
t , we get

∇
(
Jε(|∇u|)
|∇u|

)
= ∇(hε(|∇u|)) = h′ε(|∇u|)∇(|∇u|)

and, by straightforward calculation, we see that |∇(|∇u|)| �
∥∥D2u

∥∥. Therefore, the
first term on the left-hand side of (2.12) can be estimated as

∣∣∣∣
∫
C
A(|∇u|)

(
∇u,∇

(
Jε(|∇u|)
|∇u|

))
φρ dx

∣∣∣∣�
∫
C
A(|∇u|)∥∥D2u

∥∥φρ|∇u||h′ε(|∇u|)|dx.
(2.13)
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Choosing η as in (2.4) and using theorem 2.2, one has

∫
C
A2(|∇u|)∥∥D2u

∥∥2
φ2

ρ dx =
∫
C\Bρ

A(|∇u|)|∇u|ηA(|∇u|)∥∥D2u
∥∥2

|∇u|η φ2
ρ dx

� sup
C\Bρ

(A(|∇u|)|∇u|η)
∫
C\Bρ

A(|∇u|)∥∥D2u
∥∥2

|∇u|η dx � c,

hence, by Lebesgue embedding space, A(|∇u|)∥∥D2u
∥∥φρ ∈ L1(C), for all ρ > 0.

Since

hε(t) =

⎧⎪⎨
⎪⎩

1 if t � 2ε,
2 − 2ε

t if ε � t � 2ε,
0 if 0 � t � ε

h′ε(t) =

⎧⎪⎨
⎪⎩

0 if t > 2ε,
2ε
t2 if ε < t < 2ε,
0 if 0 < t < ε,

(2.14)

we get that lim
ε→0

|∇u||h′ε(|∇u|)| = 0 a.e. in C and |∇u||h′ε(|∇u|)| � |∇u| 2ε
|∇u|2 � 2.

Then, since A(|∇u|)|∇u||h′ε(|∇u|)|
∥∥D2u

∥∥φρ � 2A(|∇u|)∥∥D2u
∥∥φρ ∈ L1(C),

using Dominated convergence theorem in (2.13), we obtain

lim
ε→0

∣∣∣∣
∫
C
A(|∇u|)

(
∇u,∇

(
Jε(|∇u|)
|∇u|

))
φρ dx

∣∣∣∣ = 0, ∀ρ > 0. (2.15)

From (2.15), passing to the limit in (2.12), we get

lim
ε→0

∫
C
A(|∇u|)Jε(|∇u|)

|∇u| (∇u,∇φρ) dx

= lim
ε→0

(
ϑ

∫
C

uq

|x|pφρ
Jε(|∇u|)
|∇u| dx+

∫
C
g(x, u)φρ

Jε(|∇u|)
|∇u| dx

)
. (2.16)

Since

lim
ε→0

Jε(|∇u|)
|∇u| = 1,

using Dominated convergence theorem, we obtain

∫
C
A(|∇u|)(∇u,∇φρ) dx = ϑ

∫
C

uq

|x|pφρ dx+
∫
C
g(x, u)φρ dx

and in particular, by (2.11), one has

∫
C∩(B2ρ\Bρ)

A(|∇u|)(∇u,∇φρ) dx = ϑ

∫
C

uq

|x|pφρ dx+
∫
C
g(x, u)φρ dx. (2.17)
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Using Hölder inequality and (2.5), we estimate the left-hand side of (2.17) as∣∣∣∣∣
∫
C∩(B2ρ\Bρ)

A(|∇u|)(∇u,∇φρ) dx

∣∣∣∣∣
�
∫
C∩(B2ρ\Bρ)∩{|∇u|<K}

|A(|∇u|)∇u||∇φρ|dx

+
∫
C∩(B2ρ\Bρ)∩{|∇u|�K}

|A(|∇u|)∇u||∇φρ|dx

� kCK

∫
C∩(B2ρ\Bρ)∩{|∇u|<K}

1
ρ
dx+ c1

∫
C∩(B2ρ\Bρ)∩{|∇u|�K}

|∇u|p−1|∇φρ|dx

� ckCK

(
1
ρ

∫ 2ρ

ρ

rN−1 dr
)

+ c1

(∫
C∩(B2ρ\Bρ)∩{|∇u|�K}

|∇u|p dx

) p−1
p
(∫

C∩(B2ρ\Bρ)∩{|∇u|�K}
|∇φρ|p dx

) 1
p

� c

⎡
⎣kCKρ

N−1 +

(∫
B2ρ\Bρ

1
ρp

dx

) 1
p

⎤
⎦ = c

[
kCKρ

N−1 +
(

1
ρp

∫ 2ρ

ρ

rN−1 dr
) 1

p

]

= c

[
kCKρ

N−1 +
(
ρN

ρp

) 1
p

]
ρ→0−−−→ 0.

Therefore, passing to the limit in (2.17) for ρ→ 0, we get

0 = lim
ρ→0

(
ϑ

∫
C

uq

|x|pφρ dx+
∫
C
g(x, u)φρ dx

)
. (2.18)

On the other hand, since φρ(x) → 1 for ρ→ 0 and g(x, u) > 0, using again
dominated convergence theorem, we get

lim
ρ→0

ϑ

∫
C

uq

|x|pφρ dx+ lim
ρ→0

∫
C
g(x, u)φρ dx = ϑ

∫
C

uq

|x|p dx+
∫
C
g(x, u) dx > 0,

which contradicts (2.18). If Ω is smooth, since the right-hand side of (1.1) is pos-
itive, by Höpf’s Lemma (see [27, 30]), a neighbourhood of the boundary belongs
to a component C of Ω\Zu. The case Ω\Zu not connected would imply the exis-
tence of a second connected component C′ with ∂C′ ⊂ Zu, but this would provide
a contradiction with the first part of the proof. Thus Ω\Zu is connected. �

Remark 2.10. We remark that the previous theorem still holds if we replace the
assumption g(x, u) > 0 by the assumption uq

|x|p + g(x, u) > 0 for every x ∈ Ω.

Lemma 2.11. Let u ∈W 1,p
0 (Ω) be a nonnegative weak solution to the problem (1.1).

Then

lim
|x|→0

u(x) = +∞. (2.19)
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Proof. Since g(x, u) > 0, u is a supersolution to −div(A(|∇u|)∇u) = ϑ uq

|x|p . By

strong maximum principle (see [27, theorem 7.1.2]), if we set C̃ := inf
BR

u > 0, we

get

− div (A(|∇u|)∇u) � ϑ
C̃q

|x|p :=
C

|x|p in BR, (2.20)

If we consider ⎧⎪⎨
⎪⎩
−div (A(|∇w|)∇w) = C

|x|p in BR,

w > 0 in BR,

w = 0 on ∂BR,

(2.21)

we have that (2.21) admits an unique radial non-increasing solution w ∈W 1,p
0 (BR)

such that w(r) → +∞ for r → 0+ (see the appendix for details).
Since u � w on ∂BR, using (w − u)+ ∈W 1,p

0 (BR) as function test in (2.20) and
(2.21), we get

∫
BR

(|∇w|p−2∇w − |∇u|p−2∇u,∇(w − u)+) dx � 0.

Using (2.2), we have that

c2c̄

∫
BR

(|∇w| + |∇u|)p−2|∇(w − u)+|2 dx

�
∫

BR

(|∇w|p−2∇w − |∇u|p−2∇u,∇(w − u)+) dx � 0

then (w − u)+ = 0 on BR, i.e. w � u on BR.
Therefore, since w(r) → +∞ for r → 0, we have that lim

|x|→0
u(x) = +∞. �

3. Symmetry and monotonicity results

3.1. Weak comparison principle

Let us first prove the following result:

Theorem 3.1 Weak comparison principle. Let λ < 0 and Ω̃ be a bounded domain
such that Ω̃ � Ωλ. Assume that u ∈ C1(Ω̄\{0}) is a solution to (1.1) such that
u � uλ on ∂Ω̃. Then there exists a positive constant δ = δ(λ, p, q, g, dist(Ω̃, ∂Ω))
such that if |Ω̃| < δ, then it holds

u � uλ in Ω̃.

https://doi.org/10.1017/prm.2022.74 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.74


Symmetry for quasilinear problems 1869

Proof. We have (in the weak sense) that u and uλ satisfy

−div(A(|∇u|)∇u) = ϑ
uq

|x|p + g(x, u) in Ω (3.1)

−div(A(|∇uλ|)∇uλ) = ϑ
uq

λ

|xλ|p + g(xλ, uλ) in Rλ(Ω). (3.2)

If (u− uλ)+ ≡ 0 in Ω̃, we have the claim. Then, we assume by contradiction that
(u− uλ)+ �≡ 0 in Ω̃ and we want to use ϕ := (u− uλ)+χΩ̃ as test function.

In order to do this, we notice that, by lemma 2.11, lim
|x|→0

u(x) = +∞.

Then, since u ∈ C1(Ω̄\{0}) (see remark 1.2) and 0 /∈ Ω̃, we have that u ∈ L∞(Ω̃);
therefore uλ ∈ L∞(Ω̃) in supp(u− uλ)+.

By lemma 2.11, we have that

lim
|x|→0

u(x) = +∞ ⇔ lim
|y|→0λ

uλ(y) = +∞,

hence

0λ = Rλ(0) /∈ supp(u− uλ)+. (3.3)

From the assumption u � uλ on ∂Ω̃, it follows ϕ := (u− uλ)+χΩ̃ ∈W 1,p
0 (Ω), then,

we can choose ϕ as test function in weak formulation of (3.1) and (3.2) obtaining∫
Ω̃

A(|∇u|)(∇u,∇(u− uλ)+) dx =
∫

Ω̃

ϑ
uq

|x|p (u− uλ)+dx+
∫

Ω̃

g(x, u)(u− uλ)+dx

(3.4)∫
Ω̃

A(|∇uλ|)(∇uλ,∇(u− uλ)+) dx =
∫

Ω̃

ϑ
uq

λ

|xλ|p (u− uλ)+dx

+
∫

Ω̃

g(xλ, uλ)(u− uλ)+dx. (3.5)

Then, if we set Ω+ := supp(u− uλ)+ ∩ Ω̃ and we subtract (3.4) and (3.5), we get∫
Ω+

(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx

=
∫

Ω+
ϑ

(
uq

|x|p − uq
λ

|xλ|p
)

(u− uλ) dx+
∫

Ω+
[g(x, u) − g(xλ, uλ)](u− uλ) dx.

(3.6)

Noticing |x| � |xλ|, (3.6) becomes∫
Ω+

(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx

� ϑ

∫
Ω+

1
|x|p

(
uq − uq

λ

u− uλ

)
(u− uλ)2 dx

+
∫

Ω+

g(x, u) − g(x, uλ)
u− uλ

(u− uλ)2 dx+
∫

Ω+
[g(x, uλ) − g(xλ, uλ)](u− uλ) dx.
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Using monotonicity of g(·, u), the locally Lipschitz continuity of g(x, ·) and taking
in account that for λ < 0 one has that |x| � C in Ωλ for some positive constant C,
one has ∫

Ω+
(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx

� cϑ

∫
Ω+

(
uq − uq

λ

u− uλ

)
(u− uλ)2 dx+KL

∫
Ω+

(u− uλ)2 dx. (3.7)

We recall that yq is locally Lipschitz continuous in (0,+∞) and the solution u is
strictly positive in Ω̃ and also in Ω+. Then, (3.7) becomes∫

Ω+
(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx

� ϑCL

∫
Ω+

(u− uλ)2 dx+KL

∫
Ω+

(u− uλ)2 dx =: c
∫

Ω+
(u− uλ)2 dx. (3.8)

Let us now consider separately the following cases.

• 1 < p < 2.

• p � 2, mA � 0.

• p � 2, mA < 0 and A(t) � τ(C) > 0 with τ positive constant that depends on
C ⊂ [0,+∞) compact.

• p � 2, mA < 0, ∃C̃ ⊂ [0,+∞) compact such that inf
C̃
A(t) = 0.

Case: 1 < p < 2.
Using (2.2) and classic Poincaré inequality, (3.8) becomes

c2c̄

∫
Ω+

(|∇u| + |∇uλ|)p−2|∇(u− uλ)|2 dx � c

∫
Ω+

(u− uλ)2 dx

� cC2
p(|Ω+|)

∫
Ω+

|∇(u− uλ)|2 dx

= cC2
p(|Ω+|)

∫
Ω+

|∇(u− uλ)|2(|∇u| + |∇uλ|)p−2(|∇u| + |∇uλ|)2−p dx. (3.9)

Now, from (3.3), we infer that |∇uλ| ∈ L∞(Ω+).
Then, since |∇u| ∈ L∞(Ω+), using also the fact that 2 − p > 0, (|∇u| + |∇uλ|)2−p

is bounded in Ω+. Thus, equation (3.9) becomes∫
Ω+

(|∇u| + |∇uλ|)p−2|∇(u− uλ)|2 dx

� cC2
p(|Ω+|)

∫
Ω+

(|∇u| + |∇uλ|)p−2|∇(u− uλ)|2 dx,

which gives a contradiction if cC2
p(|Ω+|) < 1.
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This occurs if we consider δ := δ(λ, q, p, g,dist(Ω̃, ∂Ω)) sufficiently small such that
|Ω̃| � δ (that satisfies our assumption) and Cp(|Ω+|) = Cp(|Ω̃ ∩ supp(u− uλ)+|) <√

1
c jointly.
Then, taking into account the boundary condition,

u− uλ = 0 in Ω+ := Ω̃ ∩ supp(u− uλ)+.

This shows that actually (u− uλ)+ = 0 on Ω̃, that is

u � uλ in Ω̃.

Case: p � 2 and mA � 0.
Since mA � 0, by (2.6) we get that A(t) is a non-decreasing function; then we

can use [5, lemma 4.3], namely

(A(|ξ|)ξ −A(|η|)η, ξ − η) � 1
3
(A(|ξ|) +A(|η|)|ξ − η|2, ∀ξ, η ∈ R

N . (3.10)

Hence, (3.8) becomes

1
3

∫
Ω+

A(|∇u|)|∇(u− uλ)|2 dx � 1
3

∫
Ω+

A(|∇u| + |∇uλ|)|∇(u− uλ)|2 dx

�
∫

Ω+
(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx � c

∫
Ω+

(u− uλ)2 dx.

(3.11)

Moreover, exploiting theorem 2.4, we can use in the right-hand side of (3.11) the
weighted Poincaré inequality (see corollary 2.8) with ρ = A(|∇u|). Therefore, we
get

1
3

∫
Ω+

A(|∇u|)|∇(u− uλ)|2 dx � c

∫
Ω+

(u− uλ)2 dx

� cCpp(|Ω+|)
∫

Ω+
A(|∇u|)|∇(u− uλ)|2 dx (3.12)

which gives a contradiction if cC2
pp(|Ω+|) < 1

3 .
Arguing as in the case 1 < p < 2, we obtain

u � uλ in Ω̃.

Case: p � 2, mA < 0 and A(t) � τ(C) > 0 with τ positive constant that
depends on C ⊂ [0,+∞) compact.
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Using (2.1) in the left-hand side of (3.8), one has∫
Ω+

(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx

� c̄

∫
Ω+

|∇(u− uλ)|2
(∫ 1

0

A (|∇uλ + s (∇(u− uλ)) |) ds
)

dx (3.13)

As we remarked in the first part of the proof, |∇u| and |∇uλ| are in L∞(Ω+); hence
there exists K̃ ∈ R

+ such that

|∇uλ + s∇(u− uλ)| � (1 − s)|∇uλ| + s|∇u| � max{|∇u|, |∇uλ|}
� max{‖∇u‖∞ , ‖∇uλ‖∞} � K̃. (3.14)

Therefore, if we consider the compact set [0, K̃], equation (3.13) becomes∫
Ω+

(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx

� c̄

∫
Ω+

|∇(u− uλ)|2
(∫ 1

0

A (|∇uλ + s (∇(u− uλ)) |) ds
)

dx

� c̄τ(K̃)
∫

Ω+
|∇(u− uλ)|2 dx

Hence, substituting in (3.8) and using classic Poincaré inequality, we have

c̄τ(K̃)
∫

Ω+
|∇(u− uλ)|2 dx � cCp(|Ω+|)

∫
Ω+

|∇(u− uλ)|2 dx

which gives a contradiction if cCp(|Ω+|) < c̄τ(K̃).
Arguing as in the case 1 < p < 2, we obtain

u � uλ in Ω̃.

Case: p � 2, mA < 0 and there exists C̃ ⊂ [0,+∞) compact such that
inf
C̃

A(t) = 0.

By (1.4), A(t) → +∞ for t→ +∞, then if there exists C̃ ⊂ [0,+∞) compact set
such that inf

C̃
A(t) = 0, we have that necessarily lim inf

t→0+
A(t) = 0.

Therefore, by (1.5), there exists δ > 0 such that A(t) is a non-decreasing function
on I0 := (0, δ).

Let us set

Ω+
1 := {x ∈ Ω+ : |∇u(x)| < δ}

Ω+
2 := {x ∈ Ω+ : δ � |∇u(x)| < K}

Ω+
3 := {x ∈ Ω+ : |∇u(x)| � K}

where K is chosen as in (1.3).
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Using the weighted Poincaré inequality in the right-hand side of (3.8) with
ρ = A(|∇u|), we get

c

∫
Ω+

(u− uλ)2 dx � cCpp(|Ω+|)
∫

Ω+
A(|∇u|)|∇(u− uλ)+|2 dx

� cCpp(|Ω+|)
[∫

Ω+
1

A(|∇u|)|∇(u− uλ)+|2 dx

+ sup
δ�|∇u|<K

A(|∇u|)
∫

Ω+
2

|∇(u− uλ)+|2 dx+
∫

Ω+
3

A(|∇u|)|∇(u− uλ)+|2 dx

]

(3.15)

For the left-hand side of (3.8) we use (3.10) on the set Ω+
1 since A(t) is non-

decreasing, while we use (2.2) on Ω+
2 and Ω+

3 . Then

∫
Ω+

(A(|∇u|)∇u−A(|∇uλ|)∇uλ,∇(u− uλ)) dx

� 1
3

∫
Ω+

1

A(|∇u|)|∇(u− uλ)|2 dx+ c2c̄

∫
Ω+

2

(|∇u| + |∇uλ|)p−2|∇(u− uλ)|2 dx

+ c2c̄

∫
Ω+

3

(|∇u| + |∇uλ|)p−2|∇(u− uλ)|2 dx

� 1
3

∫
Ω+

1

A(|∇u|)|∇(u− uλ)|2 dx+ c2c̄

∫
Ω+

2

|∇u|p−2|∇(u− uλ)|2 dx

+ c2c̄

∫
Ω+

3

|∇u|p−2|∇(u− uλ)|2 dx

� 1
3

∫
Ω+

1

A(|∇u|)|∇(u− uλ)|2 dx+ c2c̄δ
p−2

∫
Ω+

2

|∇(u− uλ)|2 dx

+
c2c̄

c1

∫
Ω+

3

A(|∇u|)|∇(u− uλ)|2 dx (3.16)

Using (3.15) and (3.16) in (3.8), we get

(
1
3
− cCpp(|Ω+|)

)∫
Ω+

1

A(|∇u|)|∇(u− uλ)|2 dx

+

(
c2c̄δ

p−2 − cCpp(|Ω+|)
(

sup
δ<|∇u|�K

A(|∇u|)
))∫

Ω+
2

|∇(u− uλ)|2 dx

+
(
c2c̄

c1
− cCpp(|Ω+|)

)∫
Ω+

3

A(|∇u|)|∇(u− uλ)|2 dx � 0 (3.17)

and arguing as for 1 < p < 2 we get that u � uλ in Ω̃. �
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3.2. Symmetry result

Now we can prove our symmetry and monotonicity result.
Proof of theorem 1.3. The proof follows via the moving planes technique [2, 14,

15, 18, 21]. First we define

Λ0 := {a < λ < 0 : u � ut in Ωt for all t ∈ (a, λ]}.

We start showing that

Λ0 �= ∅.
To prove this, we observe that, since u(a) = 0 and Ω is smooth and strictly convex,
by Höpf Lemma [27, theorem 5.5.1]

∃δ > 0 such that
∂u

∂x1
(x) > 0 for all x ∈ Iδ(a).

Moreover we note that, by the Höpf Lemma applied to a solution u of problem
(1.1), we know that

Zu ⊂ Ω.

Hence, we can consider a < λ < a+ ε with ε a small positive constant such that

(Ωλ ∪Rλ(Ωλ)) ⊂ Iδ(a).

So, by monotonicity, we have that

u � uλ in Ωλ.

Now we define

λ̄ := sup Λ0.

We want to show that u � uλ in Ωλ for every λ ∈ (a, 0], namely that:

λ̄ = 0.

Assume by contradiction that λ̄ < 0. We will prove that u � uλ̄+τ in Ωλ̄+τ for any
0 < τ < τ̄ with τ̄ small enough.

By continuity we have that u � uλ̄ in Ωλ̄\0λ̄.
Let us consider ZR

u,λ̄
:= {x ∈ Ωλ̄ : ∇u(x) = 0 ∨∇uλ̄(x) = 0} and open set Aλ̄ ⊂

Ωλ̄ such that

ZR
u,λ̄ ⊂ Aλ̄ � Ω.

We note that by Höpf Lemma, we can assume that Aλ̄ � Ω and since |ZR
u,λ̄

| = 0,
we can take Aλ̄ of arbitrarily small measure. Since we are working in Ωλ̄, with
λ̄ < 0, the weight 1

|x|p is not singular there. Moreover, in a neighbourhood of 0λ, by
lemma 2.11, we have that u < uλ. Since elsewhere 1

|xλ|p is not singular and u, uλ
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are bounded, we can use Strong Comparison Principle (see [27, theorem 2.5.2]) to
get that, if C is a connected component of Ωλ̄\ZR

u,λ̄
, then

u < uλ̄ or u ≡ uλ̄ in C.

Actually, we prove that the latter case is not possible. In fact, supposing that
u ≡ uλ̄ in C, if we reflect C through the hyperplane Tλ̄, we obtain that

u ≡ uλ̄ in C ∪Rλ̄(C) connected component of Ω\Zu. (3.18)

We note that C̄ ∩ ∂Ω �= 0 follows by Dirichlet datum. Then, (3.18) would imply
the existence of a local symmetry phenomenon where (∂C\Tλ̄) ∪Rλ̄(∂C\Tλ̄) ⊂ Zu;
therefore Ω\Zu would be not connected, contradicting lemma 2.9.

Then

u < uλ̄ in C. (3.19)

Now, let us consider a compact set K ⊂ Ωλ̄\Aλ̄. We get that:

• By lemma 2.11, in a neighbourhood of 0λ, u < uλ for every λ ∈ [λ̄, λ̄+ τ ] for
any 0 < τ < τ̄ with τ̄ > 0 small.

By uniform continuity of u we have that u < uλ̄+τ in K; it is equivalent to
say that

w := (u− uλ̄+τ )+=0 in K (3.20)

then

supp(w) ⊂ Ωλ̄+τ\K. (3.21)

• Taking into account the zero Dirichlet boundary datum and using Höpf Lemma,
it is easy to show that, for some δ̄ > 0, there exists a tubular neighbourhood
such that

u < uλ̄+τ in Iδ̄(∂Ω) ∩ Ωλ̄+τ (3.22)

for any 0 < τ < τ̄ .
Instead, for the region near ∂Ω ∩ Tλ̄+τ , we use the monotonicity properties

of solutions obtained by Höpf Lemma. In fact, since Ω is smooth and strictly
convex, if we consider p ∈ ∂Ω ∩ Tλ̄+τ , we get that

∃δ̄ > 0 such that
∂u

∂x1
(x) > 0 for all x ∈ Iδ̄(p).

So we have obtained that

u < uλ̄+τ in Iδ̄(∂Ω) ∩ Tλ̄+τ . (3.23)

If we denote with Nλ̄+τ a neighbourhood of ∂Ωλ̄+τ ∩ ∂Ω, from (3.22) and (3.23),
we obtain that

u < uλ̄+τ in Nλ̄+τ . (3.24)
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Summarizing up, in particular we get that

u < uλ̄+τ in K ∪Nλ̄+τ . (3.25)

Moreover, equation (3.21), using (3.24), becomes

supp(w) � Ωλ̄+τ\K.

Now , we choose |K| big enough such that |Ωλ̄+τ\(K ∪Nλ̄+τ )| is sufficiently small
so that theorem 3.1 works.

Since K is a closed set, using (3.20) and (3.24), it follows

u � uλ̄+τ on ∂
(
Ωλ̄+τ\

(
K ∪Nλ̄+τ

))
. (3.26)

Therefore, by theorem 3.1 it follows that

u � uλ̄+τ in Ωλ̄+τ\
(
K ∪Nλ̄+τ

)
for any 0 < τ < τ̄ .

Exploiting also (3.25), we have that

u � uλ̄+τ in Ωλ̄+τ

for any 0 < τ < τ̄ , but this gives a contradiction with the definition of λ̄. So we
have that λ̄ = 0 and so

u � u0 in Ω0.

If we perform the moving plane technique in the opposite direction, we obtain that

u � u0 in Ω0.

Then u is symmetric with respect to the hyperplane {x1 = 0}.
Moreover, the fact that the solution is non-decreasing in the x1-direction in Ω ∩

{x1 < 0} is implicit in the moving plane procedure. Finally, if Ω is a ball centred
at origin, repeating this argument along any direction, it follows that u is radially
symmetric. The fact the ∂u

∂r < 0 for r �= 0, follows by Höpf boundary lemma which
works in this case since the level sets are balls and therefore fulfill the interior sphere
condition.

Acknowledgments
L. Montoro, L. Muglia and B. Sciunzi are partially supported by PRIN project
2017JPCAPN (Italy): Qualitative and quantitative aspects of nonlinear PDEs,
and L. Montoro by Agencia Estatal de Investigación (Spain), project PDI2019-
110712GB-100.

https://doi.org/10.1017/prm.2022.74 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.74


Symmetry for quasilinear problems 1877

Appendix A.

In this appendix we study the existence and the asymptotic behaviour of solutions
to the problem ⎧⎪⎨

⎪⎩
−div (A(|∇w|)∇w) = C

|x|p in BR,

w > 0 in BR,

w = 0 on ∂BR.

(A.1)

Taking into account [5], the problem (A.1) is the Euler equation of the
minimization problem for the functional J : W 1,p

0 (BR) → R defined as

J(w) =
∫

BR

G(|∇w|) dx−
∫

BR

C

|x|p w dx

where G : [0,+∞) → [0,+∞) is defined as

G(t) :=
∫ t

0

sA(s) ds. (A.2)

By (1.4), sA(s) � c2s
p−1 for s > 0. Integrating∫ |∇w|

0

sA(s) ds �
∫ |∇w|

0

c2s
p−1 ds⇒ G(|∇w|) � c2

|∇w|p
p

. (A.3)

Our goal is to apply Weierstrass Theorem to prove that the functional J has a
global minimum point.

We set h(x) := C
|x|p ∈ Lq(BR) with 1 � q < N

p .

• First, we prove that J is coercive.
Let us consider a minimizing sequence wm ∈W 1,p

0 (BR) for J . Using (A.3)
we get

J(wm) =
∫

BR

G(|∇wm|) dx−
∫

BR

h(x) wm dx

� c2
p

∫
BR

|∇wm|p dx−
∫

BR

h(x)|wm|dx

� c2
p
‖wm‖p

W 1,p
0 (BR)

− ‖h(x)‖p∗′ ‖wm‖p∗

� c2
p
‖wm‖p

W 1,p
0 (BR)

− c ‖h(x)‖p∗′ ‖wm‖W 1,p
0 (BR) .

Since p∗
′
< N

p and p > 1, if ‖wm‖W 1,p
0 (BR) → +∞ we have J(wm) → +∞.

• To prove the weak lower semi-continuity of J , we write the functional as

J(wm) =
∫

BR

G(|∇wm|) dx−
∫

BR

h(x) wm dx = J1(wm) − J2(wm).

Let us consider wm ⇀ w in W 1,p
0 (BR). We take s < p∗ and s′, conjugate expo-

nent of s, such that s′ < N
p . By compact embedding, up to a subsequence,
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wm → w in Ls(BR), hence

|J2(wm) − J2(w)| �
∫

BR

|h(x)wm − h(x)w|dx � ‖h(x)‖s′ ‖wm − w‖s → 0

for m→ +∞. Therefore, we have proved that

lim
m→+∞

∫
BR

h(x)wm dx =
∫

BR

h(x)w dx. (A.4)

While for the functional J1(wm), we first prove the strict convexity.
For wm �= zm,

(J ′
1(wm) − J ′

1(zm))(wm − zm)

=
∫

BR

(A(|∇wm|)∇wm −A(|∇zm|)∇zm,∇(wm − zm)) dx

� c2c̄

∫
BR

(|∇wm| + |∇zm|)p−2|∇(wm − zm)|2 dx > 0

then J1 is strictly convex.
Now, let us consider wm → w in W 1,p

0 (BR). Using Lagrange Theorem, (A.2),
(2.5), Hölder inequality and (1.3), for ξ ∈ {min{|∇wm|, |∇w|},max{|∇wm|,
|∇w|}}, we have

|J1(wm) − J1(w)| �
∫

BR

|G(|∇wm|) −G(|∇w|)|dx

=
∫

BR

|G′(|ξ|)| ||∇wm| − |∇w|| dx =
∫

BR

|ξ|A(|ξ|) ||∇wm| − |∇w|| dx

� CK

∫
BR∩{|ξ|<K}

||∇wm| − |∇w|| dx

+ c1

∫
BR∩{|ξ|�K}

max{|∇wm|p−1, |∇w|p−1} ||∇wm| − |∇w|| dx

� CK ‖wm − w‖W 1,1
0 (BR)

+ c1

(∫
BR

max{|∇wm|p, |∇w|p}dx
) p−1

p
(∫

BR

|∇(wm − w)|p dx
) 1

p

� CK ‖wm − w‖W 1,1
0 (BR) + c1c ‖wm − w‖W 1,p

0 (BR) → 0, for m→ +∞.

Then J1(wm) is strong continuous. Since J1(wm) is strictly convex, J1(wm) is
weakly lower semi-continuous.
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Hence, using (A.4), we get

J(w) = J1(w) − J2(w) � lim inf
m→+∞J1(wm) − lim

m→+∞J2(wm)

� lim inf
m→+∞ (J1(wm) − J2(wm)) = lim inf

m→+∞J(wm).

Thus J has a global maximum point w that is a weak solution to the problem
(A.1). In particular, since J1 is strictly convex and J2 is linear, the functional
J is strictly convex. Then, the solution w is unique.

Moreover we point out that the solution w is radial.
In fact, recalling the definition of xλ and uλ, since |x| = |xλ=0|, if we consider w

solution to (A.1) and w0, we get∫
BR

(A(|∇w|)∇w −A(|∇w0|)∇w0,∇(w − w0)) dx = 0.

Then, by (2.2) we obtain

c2c̄

∫
BR

(|∇w| + |∇w0|)p−2|∇(w − w0)|2 dx � 0

and w = w0. Repeating this argument along any direction, it follows that w is
radially symmetric. The radiality can be obtained also by the uniqueness of solution.

Let us now study the asymptotic behaviour of w near the origin.
First, we observe that w is non-increasing with respect to r.
In fact, for λ < 0, if we consider w and wλ that respectively satisfy the following∫

BRλ

A(|∇w|)(∇w,∇(w − wλ)+) dx =
∫

BRλ

C

|x|p (w − wλ)+dx

∫
BRλ

A(|∇wλ|)(∇wλ,∇(w − wλ)+) dx =
∫

BRλ

C

|xλ|p (w − wλ)+dx

we get, using the fact that |x| > |xλ| and (2.2), that

c2c̄

∫
BRλ

(|∇w| + |∇wλ|)p−2|∇(w − wλ)+|2 dx

� C

∫
BRλ

(
1

|x|p − 1
|xλ|p

)
(w − wλ)+dx � 0.

Then, (w − wλ)+ = 0, i.e. w � wλ ∀λ < 0.
If we choose ϕ = ϕ(|x|) as test function in weak formulation of (A.1), we get∫

BR

A(|∇w|)(∇w,∇ϕ(|x|)) dx =
∫

BR

C

|x|pϕ(|x|) dx.

Passing in radial coordinates, for r = |x|, we get

− (A(|w′|)w′rN−1)′ = CrN−1−p, r ∈ (0, R]. (A.5)

Since w is radial, we have proved that w is non-increasing with respect to r. Then
w′ is negative and |w′(r)| = −w′(r).
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We rewrite (A.5) as

−(A(|w′|)w′rN−1)′

(rN−p)′
(N − p) = C, r ∈ (0, R).

Then

lim
r→0+

− (A(|w′|)w′rN−1
)′

(rN−p)′
= c �= 0.

From (A.5), since CrN−1−p � 0, we have that (−A(|w′|)w′rN−1) is a non-decreasing
non negative function, hence

lim
r→0+

−A(|w′|)w′rN−1 = α � 0. (A.6)

If α = 0, we can apply de l’Hospital Theorem and we obtain

lim
r→0+

−A(|w′|)w′rN−1

rN−p
= c (A.7)

that we can rewrite as

lim
r→0+

A(|w′|)|w′|rp−1 = c. (A.8)

Since A ∈ C1(R+), c �= 0 and (2.4) holds, we have to consider only the cases 0 <
|w′| < τ with τ enough small and |w′| � K.

Using (A.8), we get

−A(|w′|)w′rp−1 = c+ o(1), for r → 0+

then, there exists c̃ > 0 such that

−A(|w′|)w′ � c̃

rp−1
, for r → 0+. (A.9)

If |w′| � K, using (1.3) in (A.9) one has

c1|w′|p−1 � A(|w′|)|w′| = −A(|w′|)w′ � c̃

rp−1
.

Let us consider ε > 0. Integrating on [ε,R] the following

|w′| � c̃

r
,

we get ∫ R

ε

−w′ dr �
∫ R

ε

c̃

r
dr ⇒ w(ε) � c̃ log

(
R

ε

)
.

then w(ε) → +∞ if ε→ 0+.
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If 0 < |w′| < τ , using (2.3) in (A.9) we get

A(1)|w′|mA+1 � A(|w′|)|w′| = −A(|w′|)w′ � c̃

rp−1
.

Let us consider ε > 0. Integrating on [ε,R], one has that

|w′| � c

r
p−1

mA+1

and, using (2.7), we obtain that p−1
mA+1 � 1 and then w(ε) → +∞ if ε→ 0+.

If α > 0, arguing in (A.6) as in (A.8), we consider only the cases 0 < |w′| < τ
with τ enough small and |w′| � K.

From (A.6), there exists α̃ > 0 such that

−A(|w′|)w′ � α̃

rN−1
. (A.10)

If |w′| � K, using (1.3) in (A.10) one has

c1|w′|p−1 � A(|w′|)|w′| = −A(|w′|)w′ � α̃

rN−1
.

Integrating on [ε,R] the following

−w′ = |w′| � c

r
N−1
p−1

,

since N−1
p−1 > 1 we obtain w(ε) → +∞ if ε→ 0+.

If 0 < |w′| < τ , using (2.3) in (A.10) we get

A(1)|w′|mA+1 � A(|w′|)|w′| = −A(|w′|)w′ � α̃

rN−1
.

Considering ε > 0. Integrating on [ε,R], one has

|w′| � c

r
N−1

mA+1

,

and, using (2.7), we obtain that N−1
mA+1 � 1 and then w(ε) → +∞ if ε→ 0+.
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