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Abstract. In this paper, we study the dynamics of the Newton maps for arbitrary poly-
nomials. Let p be an arbitrary polynomial with at least three distinct roots, and f be its
Newton map. It is shown that the boundary ∂B of any immediate root basin B of f is locally
connected. Moreover, ∂B is a Jordan curve if and only if deg(f |B) = 2. This implies that
the boundaries of all components of root basins, for the Newton maps for all polynomials,
from the viewpoint of topology, are tame.
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1. Introduction
Newton’s method, also known as the Newton–Raphson method named after Isaac Newton
(1642–1727) and Joseph Raphson (1648–1715), is probably the oldest and most famous
iterative process to be found in mathematics. The method was first proposed to find
successively better approximations to the roots (or zeros) of a real-valued function p(z).
Picking an initial point z0 near a root of p, Newton’s method produces an nth approximation
of the root via the formula zn+1 = fp(zn), where

fp(z) = z − p(z)

p′(z)

is called the Newton map of p. Replacing zn by zn+1 generates a sequence of approxima-
tions {zn} which may or may not converge to a root of p.

A brief history of Newton’s method, following [A], is as follows. Versions of Newton’s
method had been in existence for centuries previous to Newton and Raphson. Anticipations
of Newton’s method are found in an ancient Babylonian iterative method of approximating
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the square root of a,

zn+1 = 1
2

(
zn + a

zn

)
,

which is equivalent to Newton’s method for the function f (z) = z2 − a. The modern
formulation of the method is also attributed to Thomas Simpson (1710–1761) and Joseph
Fourier (1768–1830).

By the mid-1800s, several mathematicians had already examined the convergence of
Newton’s method towards the real roots of an equation p(z) = 0, but the investigations of
Ernst Schröder (1841–1902) and Arthur Cayley (1821–1895) are distinguished from their
predecessors in their consideration of the convergence of Newton’s method to the complex
roots of p(z) = 0.

Schröder and Cayley each studied the convergence of Newton’s method for the quadratic
polynomials, and both showed that on either side of the perpendicular bisector of the roots,
Newton’s method converges to the root on that particular side. However, in 1879, Cayley
[C] first noticed the difficulties in generalizing Newton’s method to cubic polynomials, or
general polynomials with at least three distinct roots. In [C], Cayley wrote:

‘The solution is easy and elegant in the case of a quadratic equation, but (Newton’s
method for) the next succeeding case of the cubic equation appears to present considerable
difficulty.’

The study of Newton’s method led to the theory of iterations of holomorphic func-
tions, as initiated by Pierre Fatou and Gaston Julia around the 1920s. Since then, the
study of Newton maps became one of the major themes with general interest, both in
discrete dynamical system (pure mathematics), and in root-finding algorithm (applied
mathematics), see for example [AR, Ba, Be, BFJK1, BFJK2, HSS, Pr, Ro07, Ro08,
RWY, Sh, Tan].

Let p be a polynomial with at least two distinct roots (the discussion is trivial when p has
only one (possibly multiple) root), and let ζ ∈ C be a root of p. For its Newton map fp, the
attracting basin or root basin of ζ , denoted by B(ζ ), consists of points z on the Riemann
sphere Ĉ whose orbit {f n

p (z); n ∈ N} (here gn means the nth iterate of g) converges to ζ :

B(ζ ) = {z ∈ Ĉ; f n
p (z) → ζ as n → +∞}.

It is well known that B(ζ ) is an open set of Ĉ. In the case that p has two distinct (possibly
multiple) roots, by quasi-conformal surgery, one can show that B(ζ ) is a quasi-disk and
the Julia set J (fp) is a quasi-circle. So this case is easy.

We say that a polynomial p is non-trivial (in the sense of Cayley) if p has at least three
distinct roots. A non-trivial polynomial takes the form

p(z) = a(z − a1)
n1 · · · (z − ad)nd ,

where a ∈ C − {0}, d ≥ 3, and a1, . . . , ad ∈ C are distinct roots of p, with multiplicities
n1, . . . , nd ≥ 1. This is the general case and the attracting basin B(ζ ) consists of
countably many connected components. The one containing ζ is called the immediate
attracting basin or immediate root basin, and is denoted by B0(ζ ). Przytycki [Pr] showed
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that B0(ζ ) is a topological disk when p is a non-trivial cubic polynomial. By means of
quasi-conformal surgery, Shishikura [Sh] proved that the Julia set of the Newton map
for any non-trivial polynomial is connected. This result is further generalized to Newton’s
method for entire functions by Baranski et al [BFJK1, BFJK2]. This implies, in particular,
each component of B(ζ ) is a topological disk.

Although B = B0(ζ ) has a simple topology, its boundary ∂B exhibits rich topological
structures. The reason is that the Newton map fp can have unpredictable dynamics and
complicated bifurcations on ∂B. Therefore, for Newton maps, understanding the topology
of ∂B makes a fundamental and challenging problem from the view point of dynamical
system.

Little progress had been made towards the problem until the ground-breaking work
of Roesch. In [Ro08], Roesch proved, building on previous works of Head [He]
and Tan [Tan], that ∂B is always a Jordan curve, when p is a non-trivial cubic
polynomial and deg(fp|B) = 2. The proof is the first successful application of the
Branner–Hubbard–Yoccoz puzzle theory to rational maps. The puzzle theory has also
been developed by Roesch, Wang, and Yin [RWY] to study the local connectivity and
rigidity phenomenon in parameter space.

The main result of the paper is to give a complete characterization of ∂B for the Newton
maps for all polynomials.

THEOREM 1.1. Let fp be the Newton map for any non-trivial polynomial p. Then the
boundary ∂B of any immediate root basin B is locally connected. Moreover, ∂B is a Jordan
curve if and only if deg(fp|B) = 2.

The theorem implies that the boundary of each component of the root basins is locally
connected. Therefore, the boundaries of all components of root basins, for the Newton
maps for all polynomials, from the viewpoint of topology, are tame. Our argument also has
a byproduct: the Julia set of a non-renormalizable Newton map is always locally connected,
which generalizes Yoccoz’s famous theorem to Newton maps.

Our work extends Roesch’s theorem [Ro08, Theorem 6] for cubic Newton maps to
Newton maps of arbitrary polynomials.

It is distinguished from Roesch’s work [Ro08] in two ways. First, the invariant graph is
different from those in [Ro08]. In our work, we construct only one graph adapted to the
puzzle theory: the one generated by the channel graph, while in [Ro08], countably many
candidate graphs are provided, and each of them involves very technical construction.
Second, each cubic Newton map has only one free critical point, so the puzzle theory
in [Ro08] is the same as the quadratic case; however, the Newton maps for higher
degree non-trivial polynomials can have more free critical points, and the quadratic puzzle
theory does not work here. To deal with this general case, we take advantage of recent
developments [KL1, KL2, KSS] in multi-critical polynomial dynamics.

1.1. Organization of the paper. The paper is organized as follows.
In §2, we present some basic facts for Newton maps.
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In §3, we develop a method to count the number of poles (counting a suitable
multiplicity) for Newton maps in certain domains arising from dynamics. This allows us to
construct an invariant graph for Newton maps by an inductive procedure in §4. This graph
is used to develop the puzzle theory.

In §5, we introduce the Branner–Hubbard–Yoccoz puzzle theory and sketch the idea of
the proof, whose details are carried out in the forthcoming sections. The strategy is deeply
inspired by the work of Roesch and Yin [RY].

To prove the local connectivity of ∂B, for each z ∈ ∂B, we define its end e(z) as the
intersection of infinitely many nested puzzle pieces containing z. The main point is to show
that e(z) ∩ ∂B = {z}. For this purpose, we need to treat two cases: the wandering case and
the renormalizable case.

In §6, we will show that each wandering end is a singleton. This is based on
the dichotomy: a wandering end e either satisfies the bounded degree property or its
combinatorial limit set ω(e) contains a persistently recurrent critical end. The treatments
for these two cases are different: the former needs to control the number of critical points in
long orbits of puzzle pieces, while the latter makes essential use of recent developments
in multi-critical polynomial dynamics, especially the principle nest construction and its
properties [KL1, KL2, KSS].

In §7, we handle the renormalizable case. We will show that if e(z) is periodic and
non-trivial, then e(z) ∩ ∂B = {z}. The main idea is to construct an invariant curve which
separates the end e(z) from B. The construction is natural and less technical (compare
[Ro08]). The idea is new and can be applied to study other rational maps.

In §8, we complete the proof of the main theorem.

1.2. Notation. Throughout the paper, we will use the following notation.
(1) Ĉ, C, and D are the Riemann sphere, the complex plane, and the unit disk,

respectively. The boundary of D is denoted by S.
(2) Let A be a set in Ĉ. The closure and the boundary of A are denoted by A and ∂A,

respectively. We denote by Comp(A) the collection of all connected components
of A. The cardinality of A is #A.

(3) Given two subsets A and B of Ĉ, we say that A � B if A is contained in the interior
of B.

(4) The Julia set and Fatou set of a rational map f are denoted by J (f ) and F(f ),
respectively.

2. Preliminaries
This section collects some basic facts and introduces some notation for Newton maps.

Let p be a complex polynomial, factored as

p(z) = a(z − a1)
n1 · · · (z − ad)nd ,

where a �= 0 and a1, . . . , ad ∈ C are distinct roots of p, with multiplicities n1, . . . ,
nd ≥ 1. In our discussion, we may assume d ≥ 2.
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Its Newton map fp fixes each root ak with multiplier

f ′
p(ak) = p(z)p′′(z)

p′(z)2

∣∣∣∣
z=ak

= nk − 1
nk

.

Therefore, each root ak of p corresponds to an attracting fixed point of fp with multiplier
1 − 1/nk . It follows from the equation

1
fp(z) − z

= −
d∑

k=1

nk

z − ak

that the degree of fp equals d, the number of distinct roots of p. One may also verifies that
∞ is a repelling fixed point of fp with multiplier

λ∞ =
∑d

k=1 nk∑d
k=1 nk − 1

= deg(p)

deg(p) − 1
.

From the above discussion, we see that a degree-d Newton map has d + 1 distinct fixed
points with specific multipliers. However, a well-known theorem of Head states that the
fixed points together with the specific multipliers can determine a unique Newton map.

THEOREM 2.1. (Head [He]) A rational map f of degree d ≥ 2 is the Newton map of a
polynomial p if and only if f has d + 1 distinct fixed points

a1, a2, . . . , ad , ∞,

such that for each fixed point ak , the multiplier takes the form

f ′(ak) = 1 − 1/nk with nk ∈ N, 1 ≤ k ≤ d .

In this case, the polynomial p has the form a(z − a1)
n1 · · · (z − ad)nd , a �= 0.

Now, for the Newton map f = fp of p, let B(ak) be the root basin of ak and Bk be the
immediate root basin of ak . Recall that

B(ak) = {z ∈ Ĉ; f n(z) → ak as n → +∞}.
The attracting basin for all roots is

Bf = B(a1) ∪ · · · ∪ B(ad).

We say that f is post-critically finite in Bf if there are only finitely many post-critical points
in Bf , or equivalently, each critical point in Bf will eventually be iterated to one critical
point of ak .

According to Shishikura [Sh], the Julia set of a Newton map f is always connected, or
equivalently, all Fatou components of f are simply connected (see Figure 1). By means
of quasi-conformal surgery, one can show that f is quasi-conformally conjugate, in a
neighborhood of of Ĉ − Bf , to a Newton map g which is post-critically finite in its root
basin Bg . Because the topology of the Julia set J (f ) does not change under this conjugacy,
throughout the paper, we pose the following.

Assumption 2.2. The Newton map f is post-critically finite in Bf .
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a
b

−1 ∞

FIGURE 1. Image of the Julia set J (f ) under the action of the Möbius map h(z) = z/(z − 1), where f is the
Newton map for the polynomial p(z) = (z2 − 1)(z − a)(z − b) with a = −1.142 − 2.0477 i and b = 0.1667 −

3.15485 i.

Under Assumption 2.2, if the degree d of f is two, then f is affinely conjugate to z2. In
this case, the collection Comp(Bf ) of all components of Bf consists of only two elements.
In other situations, Comp(Bf ) consists of infinitely many elements.

A virtue of Assumption 2.2 is that one can give a natural dynamical parameterization
of root basins (see [Mi06]).

LEMMA 2.3. Assume f is post-critically finite in Bf , then there exist so-called Böttcher
maps, {�B}B∈Comp(Bf ), such that for each B ∈ Comp(Bf ):
(1) �B : B → D is a conformal map;
(2) �f (B) ◦ f ◦ �−1

B (z) = zdB , for all z ∈ D, where dB = deg(f |B).

In general, for each B ∈ Comp(Bf ), the Böttcher map �B is not unique. There are
dB − 1 choices of �B when f (B) = B, and dB choices of �B when f (B) �= B and �f (B)

is determined. Once we fix a choice of Böttcher maps {�B}B∈Comp(Bf ), we may define the
internal rays, as follows.

For each B ∈ Comp(Bf ), the point �−1
B (0) is called the center of B, and the Jordan arc

RB(θ) := �−1
B ({re2πiθ : 0 < r < 1})

is called the internal ray of angle θ in B. According to a well-known landing theorem
[Mi06, Theorem 18.10], when θ is rational, the internal ray RB(θ) always lands (that is
the limit limr→1− �−1

B (re2πiθ ) exists). A number r ∈ (0, 1) and two rational angles θ1, θ2

induce a sector:

SB(θ1, θ2; r) := �−1
B ({t e2πiθ : r < t < 1, θ1 < θ < θ2}),

here θ1 < θ < θ2 means that the angles θ1, θ , θ2 sit in the circle in the counter clock-wise
order.
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3. Counting number of poles
In this section, we develop a method to count the number of poles (counting suitable
multiplicity) for Newton maps f in certain domains (which arise from dynamics). We will
show that in the domains we consider, the number of poles is strictly less than the number
of Jordan curves which bound the domain. This fact allows us to construct an invariant
graph for Newton maps by an inductive procedure (see §4).

3.1. Counting number of fixed points. By a graph we mean a connected and compact
subset of Ĉ, written as the disjoint union of finitely many points (called vertices) and
finitely many open Jordan arcs (called edges), any two of which touch only at vertices.
A graph can contain a loop.

Let G be a graph. For any z ∈ G, let ν(G, z) be the number of components of G \ {z}.
We call z a cut point of G if ν(G, z) ≥ 2 (⇐⇒ G \ {z} is disconnected), a non-cut point
of G if ν(G, z) = 1 (⇐⇒ G \ {z} is connected). Observe that all components in Ĉ \ G are
Jordan disks if and only if all z ∈ G are non-cut points.

In our discussion, by a Jordan domain or Jordan disk, we mean an open subset of Ĉ
whose boundary is a Jordan curve. A pre-Jordan domain W means a connected component
of g−1(D), where D is a Jordan disk and g is a rational map. Here the boundary ∂D

may or may not contain critical values of g. If ∂D contains no critical value of g, then
each boundary component of W is a Jordan curve; if ∂D contains at least one critical
value of g, then each component of ∂W can be written as a union of finitely many Jordan
curves, touching at critical points. In either case, for any component γ of ∂W , the map
g|γ : γ → ∂D has a well-defined degree, denoted by deg(g|γ ). It is equal to the number
of preimages g−1(q) on γ of a point q ∈ ∂D which is not a critical value.

One may observe that for any pre-Jordan domain W, any component V of h−1(W)

is again a pre-Jordan domain, here h is a rational map. To see this, note that W is a
component of g−1(D) (D is a Jordan disk) and V is a component of (g ◦ h)−1(D), where
g ◦ h is a rational map.

Let U be a pre-Jordan domain and D be a Jordan disk in Ĉ such that U ⊆ D. The filled
closure of U with respect to D, denoted by ÛD , is

ÛD = U ∪
⋃
V

V ,

where V ranges over all components of Ĉ \ U with V ⊆ D. See Figure 2.
It is easy to verify the following facts.

(1) U ⊆ ÛD ⊆ D and ÛD = ÛD′ for any Jordan disk D′ containing D.
(2) The filled closure ÛD is always a Jordan disk. To see this, if ÛD is not a Jordan disk,

then ∂ÛD is not a Jordan curve, and can be written as a union of finitely many Jordan
curves, say α1, . . . , αk with k ≥ 2, such that the intersection of any two curves is
a finite set. These curves enclose mutually disjoint Jordan disks, D1, . . . , Dk , in
Ĉ − U . Note that ∂D ⊂ Dj for some j, however this will contradict the definition
of ÛD .

(3) ÛD = U if and only if U is a Jordan disk.
The following fixed point theorem appears in [RS, Theorem 4.8].

https://doi.org/10.1017/etds.2021.168 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.168


1042 X. Wang et al

U

(a) (b)

̂UD

D

FIGURE 2. An example of pre-Jordan domain U (a) and its filled closure ÛD with respect to D (b). Clearly ÛD is
a Jordan disk bounded by a blue curve.

LEMMA 3.1. Let D ⊆ Ĉ be a Jordan disk and g be a rational map of degree at least two.
Suppose that g−1(D) has a component U ⊆ D. If ∂D ∩ ∂U contains a fixed point q, we
further require that q is repelling and g(Nq ∩ ∂U) ⊇ Nq ∩ ∂U in a neighborhood Nq of q.
Then

#Fix(g|U) = deg(g|∂U ).

Here the number of fixed points is counted with multiplicity. Recall that the multiplicity
of a fixed point z0 ∈ C is defined to be the unique integer m ≥ 1 such that, near z0,

g(z) − z = am(z − z0)
m + am+1(z − z0)

m+1 + · · ·
with am �= 0. The number m is independent of the choice of coordinates.

As a consequence of Lemma 3.1, one has the following corollary.

COROLLARY 3.2. Let D be a Jordan disk in Ĉ and g be a rational map of degree at least
two. Suppose that g−1(D) has a component U ⊆ D. If ∂D ∩ ∂U contains a fixed point q,
we further require that q is repelling and g(Nq ∩ ∂U) ⊇ Nq ∩ ∂U in a neighborhood Nq

of q. Then

#Fix(g|ÛD
) =

∑
V

deg(g|∂V ),

where V runs over all components of g−1(D) such that V ⊆ ÛD .
In particular, if ÛD contains only one fixed point (counting multiplicity), then U is a

Jordan disk (⇐⇒ U = ÛD) and g : U → D is a homeomorphism.

Proof. Let V1 = U , V2, . . . , Vn (respectively V ′
1, . . . , V ′

m) be all the components of
g−1(D) (respectively g−1(Ĉ \ D)) in the filled closure ÛD . Then by definition,

ÛD = V 1 ∪ · · · ∪ V n ∪ V ′
1 · · · ∪ V ′

m.

These V ′
k terms are clearly disjoint from fixed points. For distinct V i , V j , the intersection

V i ∩ V j is a finite set because it is contained in the critical set of g. Further, if V i ∩ V j

contains a fixed point, say q, of g, then q is a critical point and hence a superattracting
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U
VO

γ1

γ2

γ3•
p

D̂UD

FIGURE 3. In this example, there are three components of g−1(D) contained in D. They are U , V , and O. Their
boundaries touch at p. The filled closure ÛD contains U , V . Clearly, ∂U = γ1 ∪ γ2, ∂V = γ3. Moreover, ∂U

meets p twice and ∂V meets p once, and hence m(p, ÛD) = 2 + 1 = 3. Note also α(p) = γ1 ∪ γ2 ∪ γ3 and
ν(α(p), p) = 3 = m(p, ÛD) < deg(g, p) = 4.

fixed point. Moreover, we have q ∈ ∂Vi ∩ ∂D, and this implies that q is also on ∂U ∩ ∂D.
However, this contradicts our assumption. Therefore, there is no fixed point on ∂Vi ∩ ∂Vj .

It follows from Lemma 3.1 that

#Fix(g|ÛD
) =

∑
1≤k≤n

#Fix(g|V k
) =

∑
1≤k≤n

deg(g|∂Vk
).

This equality implies that if #Fix(g|ÛD
) = 1, then U is the unique component of g−1(D)

in D and deg(g|U) = 1, which proves the statement.

Remark 3.3. (What is multiplicity?) In Corollary 3.2, the sum∑
1≤k≤n

deg(g|∂Vk
)

is the cardinality #(g−1(q) ∩ ÛD) for (any) q ∈ ∂D, counting multiplicity.
The multiplicity m(p, ÛD) of p ∈ g−1(q) ∩ ÛD is an integer between 1 and the local

degree deg(g, p). A natural definition is as follows (see Figure 3).
Let F(p, ÛD) consist of those V ∈ {V1, . . . , Vn} so that p ∈ ∂V . For each V ∈

F(p, ÛD), the boundary ∂V has a natural positive orientation so that the region V is on
the right if one moves along ∂V in the orientation.

If one moves along ∂V in positive orientation, it is possible that one passes through
p once or several times. Let T (p, ∂V ) ≥ 1 be the number of the times that one passes
through p. The multiplicity m(p, ÛD) is defined by

m(p, ÛD) =
∑

V ∈F(p,ÛD)

T (p, ∂V ).

Let α(p) be the component of g−1(∂D) ∩ ÛD containing p. One may show

m(p, ÛD) = ν(α(p), p).
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Hence, we have the identity∑
p∈g−1(q)∩ÛD

ν(α(p), p) =
∑

p∈g−1(q)∩ÛD

m(p, ÛD) =
∑

1≤k≤n

deg(g|∂Vk
).

3.2. The inverse image of a Jordan curve. Let γ be a Jordan curve in Ĉ. Its complement
Ĉ − γ has two components, one is called the interior part of γ , denoted by Int(γ ), while
the other is called the exterior part of γ , denoted by Ext(γ ). The designation of the interior
or exterior parts is arbitrary at this moment.

Let g be a rational map. Suppose there is a component U of g−1(Ext(γ )) contained in
Ext(γ ). Let Û be the filled closure of U with respect to Ext(γ ). The inverse image γ −1

of γ , with respect to g, is the Jordan curve

γ −1 = ∂Û .

One may verify that g(γ −1) = γ and γ −1 is contained in (possibly equal to) a connected
component, say α, of g−1(γ ). Moreover, the degrees of g|γ −1 and g|α are well defined,
and satisfy

deg(g|γ −1) ≤ deg(g|α) ≤ deg(g).

The equality deg(g|γ −1) = deg(g|α) holds if and only if γ −1 = α. Applying the same
operation to the new curve γ −1, one gets γ −2 = (γ −1)−1. Precisely, suppose Ext(γ −1)

is given (remark: we do not specify Ext(γ −1) for the moment, but in §3.3, the choice of
Ext(γ −1) will be clear), and let V be a component g−1(Ext(γ −1)) contained in Ext(γ −1)

and V̂ be the filled closure of V with respect to Ext(γ −1), we set γ −2 = (γ −1)−1 = ∂V̂ .
Similarly, for any integer n ≥ 1, the curve γ −n can be defined inductively:

γ −n = (γ −n+1)−1,

with the property Ext(γ −n) ⊆ Ext(γ −n+1) ⊆ · · · ⊆ Ext(γ −1).
We remark that the only ambiguity in the definition of γ −1 occurs when we are choosing

the component U of g−1(Ext(γ )). There might be several components of g−1(Ext(γ ))

contained in Ext(γ ), and U is not unique. However, the readers do not need to worry about
that because in the following discussion, we actually choose some specific component U
of g−1(Ext(γ )), and there will be no ambiguity then.

3.3. Counting number of poles. We say that the Jordan curves γ1, . . . , γn with n ≥ 2
in Ĉ are independent, if:
(1) γi ∩ γj is a finite set (possibly empty), for i �= j ;
(2) for any k, there is a component Int(γk) of Ĉ \ γk , designated as the interior part of γk ,

such that the Jordan disks Int(γ1), . . . , Int(γn) are mutually disjoint (see Figure 4).
Note that when we are saying that the curves γ1, . . . , γn are independent, their interior

part Int(γk) is determined. The other component of Ĉ \ γk is the exterior part of γk ,
denoted by Ext(γk). Let

A(γ1, . . . , γn) =
⋂

1≤k≤n

Ext(γk) = Ĉ −
⋃

1≤k≤n

Int(γk).
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γ2 Int(γ2)

γ1
Int(γ1) γ4

Int(γ4)

γ3Int(γ3)

γ5 W2

W1

γ5

W1 η

FIGURE 4. An example of independent Jordan curves γ1, . . . , γ5 (a), here A(γ1, . . . , γ5) = W1 ∪ W2, and W1
can be written as A(γ5, η), where γ5, η are independent (b).

Clearly A(γ1, . . . , γn) is an open set and has finitely many connected components.
It is worth observing that for any component W of A(γ1, . . . , γn), which is not a
Jordan disk, there are independent Jordan curves η1, . . . , ηm for some m ≥ 2 such that
W = A(η1, . . . , ηm), see Figure 4.

PROPOSITION 3.4. Let g be a rational map with ∞ a repelling fixed point. Let γ1, . . . , γn

be independent Jordan curves in Ĉ satisfying:
(a) γi ∩ γj = {∞} for any i �= j ;
(b) all fixed points of g in C are contained in Int(γ1) ∪ · · · ∪ Int(γn);
(c) in a neighborhood N(∞) of ∞, one has

N(∞) ∩ γk ⊆ g(N(∞) ∩ γk), for all 1 ≤ k ≤ n;

(d) the unbounded component of g−1(γk) is contained in Ext(γk).
Then the unbounded component Uk of g−1(Ext(γk)) satisfies

Uk ⊆ Ext(γk).

Further, let Ûk be the filled closure of Uk with respect to Ext(γk) and let γ −1
k = ∂Ûk .

Then:
(1) γ −1

1 , . . . , γ −1
n are independent Jordan curves with Ext(γ −1

k ) = Ûk (see Figure 5);
(2) in each Ûk , the number of poles (counting multiplicity, see Remark 3.3) equals that

of fixed points;
(3) g−1(Ext(γk)) is disjoint from Ext(γk) \ Ext(γ −1

k );
(4) the unbounded component of g−1(A(γ1, . . . , γn)) is contained in

A(γ −1
1 , . . . , γ −1

n ).

Proof. Let αk be the unbounded component of g−1(γk). The set αk is a union of finitely
many Jordan curves, touching at finitely many points. Clearly, Ĉ \ αk has finitely many
components, and each component of g−1(Ext(γk)) (respectively g−1(Int(γk))) is contained
in one of them. Write

Comp(Ĉ \ αk) = {Ck,∞, Ck,1, . . . , Ck,l , C′
k,∞, C′

k,1, . . . , C′
k,l′ },
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•∞

γ1

Int(γ1)

γ−1
1

γ−1
2 γ2

Int(γ2)

γ3 γ−1
3

Int(γ3)

FIGURE 5. Inverse images of independent curves.

where the notation is labeled so that:
(i) Ck,∞, Ck,∞′ are the only two unbounded components;

(ii) each C ∈ {Ck,∞, Ck,1, . . . , Ck,l} (respectively {C′
k,∞, C′

k,1, . . . , C′
k,l′ }) contains a

component V of g−1(Ext(γk)) (respectively g−1(Int(γk))) such that ∂C ⊆ ∂V .
The unbounded component Uk of g−1(Ext(γk)) is contained in Ck,∞. By condition (d),

either Ck,∞ ⊆ Ext(γk) or Int(γk) ⊆ Ck,∞. The latter cannot happen, because locally near
∞, g behaves like N(∞) ∩ γk ⊆ g(N(∞) ∩ γk), and globally, g is orientation preserving.
Thus Uk ⊆ Ck,∞ ⊆ Ext(γk).

We will prove the properties (1)–(4), based on the following claim.

Ck,1 ∪ · · · ∪ Ck,l ⊆ Ûk .

In fact, if the claim is not true, we have Ck,i ⊆ Ĉ \ Ûk for some i. By condition (d), the
filled closure Ĉk,i of Ck,i with respect to Ĉ \ Ûk is disjoint from Int(γk), and Int(γk) ⊆
C′

k,∞. Let D = Ext(γk) and U be a component of g−1(Ext(γk)) contained in Ck,i . Clearly
U ⊆ D. Applying Corollary 3.2 to the pair (D, U), we have that Ĉk,i contains at least one
fixed point of g. This contradicts condition (b), which completes the proof of the claim.
(1) The following observation

γ −1
i ∩ γ −1

j ⊆ g−1(γi) ∩ g−1(γj ) ⊆ g−1(γi ∩ γj ) = g−1(∞), i �= j

implies that γ −1
i ∩ γ −1

j is a finite set, as it consists of finitely many poles.
Note that γi ⊆ Ext(γk) for i �= k, the unbounded component αi of g−1(γi) is

contained in the unbounded component of g−1(Ext(γk)). Therefore, γ −1
i ⊆ αi ⊆

Ûk , and there are mutually disjoint interior parts Int(γ −1
k ) of the curves γ −1

k . This
verifies that the curves γ −1

k are independent.
(2) It is an immediate consequence of Corollary 3.2.
(3) It follows from the claim above.
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(4) Because

A(γ1, . . . , γn) ⊆ Ext(γi) for 1 ≤ i ≤ n,

the unbounded component of g−1(A(γ1, . . . , γn)), denoted by E, is contained in that
of g−1(Ext(γi)), and therefore E ⊆ Ûi by the claim above. Thus E ⊆ Û1 ∩ · · · ∩
Ûn = A(γ −1

1 , . . . , γ −1
n ).

PROPOSITION 3.5. Let g be a rational map with ∞ a repelling fixed point. Let γ1, . . . , γn

be independent Jordan curves in Ĉ such that:
(1) ∞ ∈ γ1 ∩ · · · ∩ γn;
(2) all fixed points of g in C are contained in Int(γ1) ∪ · · · ∪ Int(γn);
(3) in each Ext(γk) \ {∞}, the number of poles equals that of fixed points.

Then the number of poles in A(γ1, . . . , γn) is n − 1, strictly less than n.

Here, the number of poles is counted with multiplicity (see Remark 3.3).

Proof. Let ak (respectively bk) be the number of poles (respectively fixed points) in
Ext(γk) \ {∞}. Let ãk (respectively b̃k) be the number of poles (respectively fixed
points) in Int(γk) = Ĉ − Ext(γk). Let a be the number of poles in H \ {∞}, where
H = A(γ1, . . . , γn). All these numbers are counted with multiplicities.

The independent curves γ1, . . . , γn decompose C into several parts. These parts satisfy
the following relations:
(1) Ext(γk) \ {∞} = (H \ {∞}) ∪ ⋃

i �=k Int(γi);
(2) C = (H \ {∞}) ∪ ⋃

1≤i≤n Int(γ1).
By counting the number of poles, we have the following identity:∑

1≤k≤n

ak =
∑

1≤k≤n

(
a +

∑
i �=k

ãi

)
= an + (n − 1)

∑
1≤i≤n

ãi

= a + (n − 1)

(
a +

∑
1≤i≤n

ãi

)
= a + (n − 1)(d − 1),

where d is the degree of g. Note that H \ {∞} is disjoint from the fixed points of g. By
counting the number of fixed points in C, we have∑

1≤k≤n

bk =
∑

1≤k≤n

(
0 +

∑
i �=k

b̃i

)
= (n − 1)

∑
1≤i≤n

b̃i = (n − 1)d.

By assumption, one has ak = bk for all k, which implies that
∑

ak = ∑
bk . Therefore,

we have a = n − 1. The proof is completed.

4. Invariant graph
Let f be a Newton map of degree d ≥ 3, post-critically finite on Bf . The aim of this section
is to prove the existence of an invariant graph for f. Here, a graph G is said to be invariant
for f if it satisfies

f (G) ⊆ G and f −1(G) is connected.
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In fact, the existence of an invariant graph is first proven by Drach et al [DMRS] and
Mikulich, Rückert, and Schleicher [MRS]. Our work is distinguished from theirs in two
aspects.

First, our idea of proof is essentially different from theirs. The construction in
Theorem 4.1 is actually inspired by a previous work [CGZ]. Analogous to [CGZ,
Proposition 4.4], it is crucial to see that the point ∞ (respectively each periodic Fatou
center in [CGZ]) has to be a non-cut point for the graph that is used to construct puzzles
in §5 (respectively tiles in [CGZ, §5]). This point is the main goal of our construction.
In contrast, the proof in [DMRS] aims to show that all the poles lie in the unbounded
component, say 
n, of f −n(
0) for sufficiently large n; see (4.1) for the definition of
channel graph 
0. Additionally, it seems to be not clear from [DMRS] whether ∞ is a cut
point of 
n or not.

Second, our graph is different from theirs. The graph G constructed in Theorem 4.1
is a strict subset of 
n. It has very good properties: points in G except some strictly
pre-periodic Fatou centers are non-cut points; see Proposition 4.8. Therefore, it is well
adapted to construct puzzles; see §5.1. In contrast, for the graph 
n, many iterated
preimages of ∞ are cut points. That is the reason why we develop a different proof and
construct a different graph.

4.1. Channel graph. For any immediate root basin B of f, there are exactly dB − 1 fixed
internal rays in B:

RB(j/(dB − 1)), 0 ≤ j ≤ dB − 2 where dB = deg(f |B).

Each of these fixed internal rays must land at a fixed point on ∂B. Because ∞ is the unique
fixed point of f on its Julia set, all fixed internal rays land at the common point ∞.

The channel graph of f, denoted by 
0, is defined by


0 =
⋃
B

dB−1⋃
j=1

RB(j/(dB − 1)), (4.1)

where B ranges over all immediate root basins in {B1, . . . , Bd}. Clearly f (
0) = 
0.
Figure 6 illustrates all possible channel graphs when d = 4. Some graphs which look like
channel graphs but in fact are fake ones are given in Figure 7.

4.2. Invariant graph. The main result in this section is the following.

THEOREM 4.1. Let f be a Newton map which is post-critically finite on Bf . Then there
exists an invariant graph G such that:
(1) f N(G) = 
0 for some integer N ≥ 1;
(2) ∞ is a non-cut point with respect to G.

The idea of the proof. Let us sketch the idea, so that the readers can have a rough picture
of the proof. For each k ≥ 1, let Ck = f −k(
0) \ f −k+1(
0). From Theorem 4.1(1), one
may easily imagine that G is actually a union of some suitable iterated preimages of 
0.
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FIGURE 6. All possible channel graphs when d = 4. The red dot is ∞ and the black dots are the centers of
immediate root basins.
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•
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FIGURE 7. Caution: these graphs are not channel graphs for d = 4, they are fake ones. Want to know why? See
Fact 4.2.

These iterated preimages are chosen in an inductive fashion. First, we extend the graph

̃0 := 
0 to a larger one 
̃1, by adding a suitable subset of C1. Inductively, at step k, we
will get an extension of the graph 
̃k from 
̃k−1 by adding a subset of C1 ∪ · · · ∪ Ck .

The choice of the subset of C1 ∪ · · · ∪ Ck is delicate, we actually choose a suitable
subset such that either its endpoint is a pole, or some endpoint of the iterated preimage is
a pole. This dichotomy is guaranteed by the shrinking lemma (see Lemma 4.11). The heart
of the proof is to show that any subset of this kind can touch another one at some pole. This
will be based on the counting number of poles (Propositions 3.4 and 3.5) in the preceding
section. However one cannot apply these results directly.

To compensate for the situation, we need to make a modification Gk of the graph 
̃k in
each step. For these Gk terms, we can apply Propositions 3.4 and 3.5 successfully. For this
technical reason, in our discussion, we actually focus on the construction of Gk (whose
modification yields 
̃k), and the graphs 
̃k do not appear directly in the proof.

Then Theorem 4.1(2) can guide each step of the proof. To construct a graph G so that
∞ is a non-cut point, we construct a sequence of modified graphs Gk so that

∞ ∈ G0 ⊆ G1 ⊆ G2 ⊆ . . . ,

here, the graph G0 is a modified version of the channel graph 
0, and Gk+1 is constructed
inductively so that the difference set Gk+1 \ Gk is the union of finitely many Jordan arcs,
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FIGURE 8. A type of channel graph 
0 (a) and its resulting invariant graph G (b). Here the red dots represent the
same point ∞. The notation ‘wt’ means the internal ray of angle t starting from the center w ∈ {a, b, c, d}.
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FIGURE 9. Two invariant graphs for two different maps. Their channel graphs are the same, but the combinations
are different. The notation ‘wt’ means the internal ray of angle t starting from the center w ∈ {a, b, c, d} ∪
{a′, b′, c′, d ′}, here x′ is a preimage of x. The blue/orange parts are the subsets of the first/second preimages of

the channel graph.

and that

ν(Gk+1, ∞) < ν(Gk , ∞) if ν(Gk , ∞) ≥ 2.

The property d = ν(G0, ∞) > ν(G1, ∞) > ν(G2, ∞) > . . . implies that after finitely
many steps, the procedure will terminate at a graph G� with ν(G�, ∞) = 1, which is
equivalent to say that ∞ is a non-cut point for G�. Finally, a suitable modification of
G� yields the required graph G. See Figures 8 and 9.

Proof of Theorem 4.1. The proof proceeds in six steps, as follows.
Step 1: from 
0 to G0. The aim of this step is to modify 
0 to a new graph G0, such

that G0 is disjoint from the d attracting fixed points.
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γ1

γ2

FIGURE 10. The channel graph 
0 (a), the modified graph G0 (b), and a non-trivial component U of Ĉ \ G0 (c).
This U can be written as A(γ1, γ2), where γ1 is the blue curve and γ2 is the purple one.

Consider an immediate root basin B of f. Recall that �B : B → D is a Böttcher map,
satisfying that �B(z)dB = �B(f (z)). Fix a number r ∈ (0, 1).

If dB ≥ 3, let


B = {∞} ∪ �−1
B ({[r , 1)e2πik/(dB−1); 0 ≤ k ≤ dB − 2}) ∪ �−1

B (rS).

If dB = 2, take a small angle θ0 ∈ (0, 1/2) and define two arcs α± in B by

α± = �−1
B ({es(log r±2πiθ0); 0 < s < 1}).

Clearly, α± connect ∞ to �−1
B (re±2πiθ0), and α± ⊆ f (α±). For convenience, in this case,

we say that the arcs α± are tangent to the internal ray �−1
B ((0, 1)) at ∞. The preimages

f −n(α±) are also said to be tangent to internal rays f −n(�−1
B ((0, 1))) at some points in

f −n(∞). We set


B = {∞} ∪ α+ ∪ α− ∪ �−1
B ({r e2πit ; θ0 ≤ t ≤ −θ0}).

Finally, let

G0 =
⋃
B


B ,

where the union is taken over all immediate root basins B of f. Clearly G0 avoids all centers
of the immediate root basins. See Figure 10.

Step 2: from G0 to G1. For a finite graph � ⊆ Ĉ with ∞ ∈ �, its complement Ĉ \ �

has finitely many components. There are two kinds of unbounded ones. An unbounded
component U of Ĉ \ � is called trivial if ν(∂U , ∞) = 1 (equivalently, ∞ is a non-cut
point of ∂U ); non-trivial if ν(∂U , ∞) ≥ 2 (i.e., ∞ is a cut point of ∂U ).

For the graph G0 given by Step 1, the following fact is non-trivial.

FACT 4.2. An unbounded component U of Ĉ \ G0 is trivial (that is, ∂U \ {∞} is
connected) if and only if ∂U = 
B with dB = 2.

Proof. The ‘⇐�’ part is obvious. We need to show the ‘�⇒’ part. If it is not true, then
there are two possibilities for U:
(1) ∂U intersects at least two root basins; or
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•

V
U

FIGURE 11. This figure shows why the first graph in Figure 7 is not a channel graph, and it is used in the proof of
Fact 4.2. Here V is a connected component of f −1(U) (in general, V is not necessarily a topological disk).

(2) ∂U is a component of Ĉ − 
B with dB ≥ 3 (see Figures 10 and 11).
The former case implies that ∂U \ {∞} has at least two components. Hence it is

impossible.
In the following, we consider the latter case. Note that U ⊆ f (U) and the image

f (U ∩ B) covers U ∩ B twice. One may also observe that there is a component V of
f −1(U), contained in U, such that ∂V contains two sections of fixed internal rays. Note
that V contains only one fixed point, namely ∞. However, by Lemma 3.1, one has

#Fix(f |V ) = deg(f |∂V ).

This gives a contradiction, because #Fix(f |V ) = 1 and deg(f |∂V ) ≥ 2.

Fact 4.2 has the following interesting corollary.

FACT 4.3. Under the assumption d = deg(f ) ≥ 3, there are at least two immediate root
basins B with dB = 2. As a consequence, trivial and non-trivial components both exist in
Comp(Ĉ \ G0).

Proof. This fact is obvious if dB = 2 for all immediate root basins B. So we may assume
dB ≥ 3 for some B. In this case, Ĉ − 
B has at dB − 1 ≥ 2 unbounded components.
To prove the fact, we will show each unbounded component of Ĉ − 
B contains an
immediate root basin B ′′ with dB ′′ = 2.

In fact, if some unbounded component of Ĉ − 
B , say U, contains no immediate root
basin B ′ with dB ′ = 2, then there are two cases:
(1) there is no immediate root basin completely contained in U; or
(2) all immediate root basins B ′′ in U satisfy that dB ′′ ≥ 3.

In the former case, U is trivial. However, this contradicts Fact 4.2.
In the latter case, we can find an immediate root basin B ′′ ⊆ U , which is an innermost

one, and such that some unbounded component V of Ĉ − 
B ′′ is also trivial (this is an
easy observation). This again contradicts Fact 4.2.
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The idea of this step is to take pullbacks of the boundaries of non-trivial unbounded
components of Ĉ \ G0.

Let Q0 be a non-trivial unbounded component of Ĉ \ G0. Such a component can be
written as Q0 = A(γ1, . . . , γn) where n ≥ 2 and γ1, . . . , γn are independent Jordan
curves. One may verify that the curves γ1, . . . , γn satisfy the conditions (a)–(d) in
Proposition 3.4. Indeed, by the construction in Step 1, the conditions (a)–(c) are satisfied,
we only need to check that the unbounded component αk of f −1(γk) is contained in
Ext(γk). To see this, note that either αk ⊆ Int(γk) or αk ⊆ Ext(γk); the former cannot
happen, the reason is that γk contains a section of some equipotential curve �−1

B (r∂D)

(for some immediate root basin B) and αk contains a section of the equipotential curve
�−1

B ( dB
√

r∂D), which can not be completely contained in Int(γk).
We then apply Proposition 3.4 to the independent curves γ1, . . . , γn, and obtain the

new independent Jordan curves γ −1
1 , . . . , γ −1

n . For these new curves, observe that:
(1) for each k, the curve γ −1

k contains at least one pole of f in C;
(2) one has γ −1

i ∩ γ −1
j ⊆ f −1(∞), for i �= j .

In the following, we will show that at least two curves of γ −1
1 , . . . , γ −1

n have a common

pole. In fact, if this is not true, then the set A(γ −1
1 , . . . , γ −1

n ) contains at least n distinct
poles. However, by Proposition 3.4, the curves γ −1

1 , . . . , γ −1
n satisfy the assumptions in

Proposition 3.5. Then by Proposition 3.5, the number of poles in A(γ −1
1 , . . . , γ −1

n ) is
exactly n − 1 (counting multiplicity). This is a contradiction.

Finally, let us define three curve families �0, �∗
1 , �1, and a new graph G1 by

�0 =
⋃
Q0

{γ1, . . . , γn}, �∗
1 = �1 =

⋃
Q0

{γ −1
1 , . . . , γ −1

n }, G1 =
⋃

γ∈�∗
1

γ ,

where Q0 ranges over all non-trivial unbounded components of Ĉ \ G0. The existence of
common poles for the curves γ −1

k , implies that

ν(G1, ∞) < ν(G0, ∞) = d .

Note that we have the inclusion

f (�1) := {f (γ ); γ ∈ �1} ⊆ �0, f (G1) ⊆ G0.

Step 3: from G1 to G2. The idea of the proof is similar to that of Step 2: taking pullbacks
of the boundaries of non-trivial unbounded components of Ĉ \ G1, until some pullback
hits a pole. We remark that this step actually reveals the general case of the pullback
procedure. The shrinking lemma is involved to deal with the difficulty arising here.

Note that if ν(G1, ∞) = 1, then ∞ is a non-cut point of G1, and hence there is nothing
to do in this step. So we may assume that ν(G1, ∞) ≥ 2, and this case happens if and only
if there exists a non-trivial unbounded component, say Q1, of Ĉ \ G1.

Note that Q1 is contained in some Q0 = A(γ1, . . . , γn) in Step 2, and that Q0 is
decomposed by the curves γ −1

1 , . . . , γ −1
n into several parts. Because Q1 is non-trivial,

it can be written as

Q1 = A(α1, . . . , αm),
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where α1, . . . , αm are independent Jordan curves. The set {α1, . . . , αm} can be decom-
posed into two disjoint subsets �1(Q1) and �(Q1), such that:
(1) each curve λ ∈ �1(Q1) comes from �1, namely �1(Q1) ⊆ �1;
(2) each curve η ∈ �(Q1) is new, that is, composed of several sections, each section is

a part of a curve in �1.
Note that each curve λ ∈ �1(Q1) ⊆ �1 must contain a pole in C. Each curve η ∈ �(Q1)

must also contain a pole in C, because if two curves in �1 intersect at a point other than
∞, then this point is a pole.

FACT 4.4. �(Q1) �= ∅. In other words, at least one curve among αk is new.

Proof. If not, then �1(Q1) = {α1, . . . , αm} ⊆ �1, and αi ∩ αj = {∞} for i �= j . There-
fore, the number of poles in Q1 = A(α1, . . . , αm) is at least m.

However, applying Proposition 3.4 to the curves f (α1), . . . , f (αm), we see that the
curves α1, . . . , αm satisfy the assumptions in Proposition 3.5. Then by Proposition 3.5,
the number of poles in A(α1, . . . , αm) is exactly m − 1 (counting multiplicity). This is a
contradiction.

We may write

�1(Q1) = {λ1, . . . , λr}, �(Q1) = {η1, . . . , ηs}.
CLAIM. The Jordan curves f (λ1), . . . , f (λr), η1, . . . , ηs are independent, and satisfy
the conditions of Proposition 3.4.

Proof. By the definition of Q1, we see that λ1, . . . , λr , η1, . . . , ηs are in different
components of Ĉ \ Q1. So the bound mutually disjoint components are Int(λ1), . . . ,
Int(λr), Int(η1), . . . , Int(ηs). Because f (λk) ⊂ Int(λk) (we have proven this when we deal
with Q0), we see immediately that f (λ1), . . . , f (λr), η1, . . . , ηs are independent, and
they satisfy the conditions of Proposition 3.4.

Applying Proposition 3.4 to these curves, for each ηj , one gets η−1
j . Moreover, the

curves λ1, . . . , λr , η−1
1 , . . . , η−1

s are independent.
If one of the resulting curves η−1

j , say η−1
k , is disjoint from poles in C, then it is exactly

the unbounded component of f −1(ηk), and:
(1) η−1

k intersects each of λ1, . . . , λr , η−1
j , j �= k, only at ∞;

(2) f : η−1
k → ηk is one-to-one.

For any integer l ≥ 1, one may define η−l−1
k inductively by

η−l−1
k = (η−l

k )−1

as long as the curves

f (λ1), . . . , f (λr), η1, . . . , ηk−1, η−l
k , ηk+1, . . . , ηs ,

are independent, and η−1
k , . . . , η−l

k are disjoint from poles in C. In this case, the curves
λ1, . . . , λr , η−1

1 , . . . , η−1
k−1, η−l−1

k , η−1
k+1, . . . , η−1

s are independent.
To continue our discussion, we need the following crucial fact.
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LEMMA 4.5. For each curve η ∈ �(Q1) = {η1, . . . , ηs}, there is a minimal integer
N = Nη ≥ 1, such that η−N contains a pole of f in C.

Proof. If it is not true for η = ηk , then for any j ≥ 1, the curves λ1, . . . , λr , η−1
1 ,

. . . , η−1
k−1, η

−j
k , η−1

k+1, . . . , η−1
s are independent, and the domains

Hj = A(λ1, . . . , λr , η−1
1 , . . . , η−1

k−1, η
−j
k , η−1

k+1, . . . , η−1
s )

satisfy

H1 ⊇ H2 ⊇ · · · ⊇ Hj ⊇ · · · .

In particular, we have

Int(η−1
k ) ⊆ Int(η−j

k ) and Int(λ1) ∪ · · · ∪ Int(λr) ⊆ Ext(η−j
k ).

This implies that the spherical diameters diam(η
−j
k ) with j ≥ 1 are uniformly bounded

from below and above.
To get a contradiction, we will show diam(η

−j
k ) → 0 as j → ∞. Note that all Jordan

curves η
−j
k traverse two distinct immediate root basins, say B ′, B ′′. We may decompose

η
−j
k into three segments βj , β ′

j , β ′′
j :

(1) β ′
j (respectively β ′′

j ) is the intersection of η
−j
k with the closure of some fixed internal

ray of B ′ (respectively B ′′), it takes the form φ−1
B ′ ((r

1/d
j

B′ , 1)e2πik/(dB′−1)) for some
k;

(2) βj = η
−j
k \ (β ′

j ∪ β ′′
j ).

The observation
⋂

j β ′
j = ⋂

j β ′′
j = {∞} implies that diam(β ′

j ) → 0 and diam(β ′′
j ) → 0

as j → ∞. It remains to prove

diam(βj ) → 0 as j → ∞.

Note that f : βj+1 → βj is a homeomorphism. By the construction of βj , there is a
large integer n0 > 0 such that β0 ∩ βn0 = ∅. It follows that βjn0 ∩ β(j+1)n0 = ∅ for all
j ≥ 0.

Choose a large integer n0 > 0 such that β0 ∩ βn0 = ∅, and βn0 has no intersection with
the postcritical set. Choose a disk neighborhood U0 of βn0 such that f n0(U0) ∩ U0 = ∅.
Then by pulling back U0 via f kn0 , we get a disk neighborhood Uk of βkn0 . It follows that
there exists a sequence of open sets {Uj } with βjn0 � Uj such that f n0(Uj+1) = Uj

and Uj+1 ∩ U0 = ∅ for j ≥ 0. By the shrinking lemma (see Lemma 4.11), one
has diam(βjn0) → 0 as j → ∞. The shrinking property Hj ⊇ Hj+1 implies that
diam(βj ) → 0 as j → ∞. This gives a contradiction.

Remark 4.6. In Lemma 4.5, it may happen that for some N ≥ 1,

η−N ∩ f −1(∞) = η ∩ f −1(∞).

In other words, the poles in η−N are already contained in η, and hence not new. Figure 12
gives such an example (in this example η = η2, N = 1).
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•

•

•

•

•

η−1
1η1 • p1

• p2

η2
η−1
2

FIGURE 12. In this example, the black dashed curves η1, η2 contain the poles p1, p2, respectively. Here, η−1
1 is

the black curve containing the new pole p2, and η−1
2 is the orange curve containing the same pole p2 as η2 does.

The pole p2 is also a critical point.

By Lemma 4.5, for each ηk , there exists a minimal integer Nk ≥ 1 such that η
−Nk

k

contains a pole. One may verify further that the Jordan curves

f (λ1), . . . , f (λr), η
−l1
1 , . . . , η−ls

s

with 0 ≤ l1 < N1, . . . , 0 ≤ ls < Ns are independent and satisfy the conditions (a)–(d) in
Proposition 3.4. Applying Proposition 3.4 to the curves

f (λ1), . . . , f (λr), η
−N1+1
1 , . . . , η−Ns+1

s ,

we get the following independent curves

λ1, . . . , λr , η
−N1
1 , . . . , η−Ns

s ,

each of which contains a pole in C. Again Proposition 3.5 implies that at least two of these
curves contain a common pole in C. We remark that each ηk passes through exactly two
immediate root basins B ′, B ′′, and so do the curves η

−j
k , 1 ≤ j ≤ Nk; these Jordan curves

overlap on an invariant subarc in {∞} ∪ B ′ ∪ B ′′.
Let us define two families of Jordan curves

�∗
2 =

⋃
Q1

{η−1
1 , . . . , η

−N1
1 , . . . , η−1

s , . . . , η−Ns
s }, �2 =

⋃
Q1

{η−N1
1 , . . . , η−Ns

s },

where Q1 ranges over all non-trivial unbounded components of Ĉ \ G1. Now we get a new
graph G2, which is an extension of G1:

G2 = G1
⋃ ⋃

γ∈�∗
2

γ .

Observe that f (G2) ⊆ G0 ∪ G2. The construction and the existence of common poles
for the curves λ1, . . . , λr , η

−N1
1 , . . . , η

−Ns
s imply that

ν(G2, ∞) < ν(G1, ∞).
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Step 4: from Gk to Gk+1, an induction procedure. Suppose for some k ≥ 2, we have
constructed the graphs G1, . . . , Gk and the curve families �∗

1 , �1 . . . , �∗
k , �k , inductively

in the following way:

�∗
l =

⋃
Ql−1

{η−1
1 , . . . , η

−N1
1 , . . . , η−1

s , . . . , η−Ns
s },

�l =
⋃
Ql−1

{η−N1
1 , . . . , η−Ns

s }, Gl = Gl−1
⋃ ⋃

γ∈�∗
l

γ ,

where Ql−1 is taken over all non-trivial unbounded components of Ĉ \ Gl−1, and that
f (Gl) ⊆ G0 ∪ Gl and ν(Gl , ∞) < ν(Gl−1, ∞), for 2 ≤ l ≤ k.

If ν(Gk , ∞) = 1, then the step is done. If ν(Gk , ∞) ≥ 2, we consider each non-trivial
unbounded component Qk of Ĉ \ Gk . Write Qk as A(δ1, . . . , δt ) and compare the curves
δ ∈ {δ1, . . . , δt } with the curves in �1 ∪ · · · ∪ �k , there are two possibilities: either
(1) δ ∈ �1 ∪ · · · ∪ �k; or
(2) δ is new, that is, δ /∈ �1 ∪ · · · ∪ �k . In this case, δ is composed of several sections,

and each section is a part of a curve in �1 ∪ · · · �k .
Let �(Qk) be the collection of new curves. For each η ∈ �(Qk), by the same argument
as Lemma 4.5, there is a minimal integer Nη ≥ 1 such that η−Nη meets a pole in C. By
Proposition 3.5, at least two curves of {η−Nη ; η ∈ �(Qk)} share a common pole. Similarly
as above, we get a new graph Gk+1 and two curve families �k+1 ⊆ �∗

k+1:

�∗
k+1 =

⋃
Qk

⋃
η∈�(Qk)

{η−1, . . . , η−Nη }, �k+1 =
⋃
Qk

⋃
η∈�(Qk)

{η−Nη },

Gk+1 = Gk

⋃ ⋃
γ∈�∗

k+1

γ ,

where Qk is taken over all the non-trivial unbounded component Qk of Ĉ \ Gk .
The resulting graph Gk+1 satisfies

ν(Gk+1, ∞) < ν(Gk , ∞), f (Gk+1) ⊆ G0 ∪ Gk+1.

After finitely many steps, we have ν(G�, ∞) = 1 for some minimal integer � ≥ 1. Then
∞ is a non-cut point for the graph G�, and f (G�) ⊆ G0 ∪ G�.

Step 5: from G� to G, a natural modification. By construction, all points in G� ∩ J (f )

are iterated preimages of ∞, and

f (G� ∩ J (f )) ⊆ G� ∩ J (f ), f N(G� ∩ J (f )) = {∞}
for some large integer N ≥ 1. Note that for any 0 ≤ k ≤ �, the graph Gk is a union of some
curves in

� = �0 ∪ �∗
1 ∪ �∗

2 ∪ �∗
3 ∪ · · · ∪ �∗

� .

To give a natural modification of G�, it suffices to define the modification of each curve
δ ∈ �. This goes in the following way.

Let B ∈ Comp(Bf ) with B ∩ δ �= ∅, then B ∩ δ consists of finitely many components.
Suppose B is eventually iterated to the immediate root basin B0. Note that each component
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• ••

δ

B

B

M(δ) ∩ B

M(δ) ∩ B

δ ∩ B

δ ∩ B

FIGURE 13. This figure shows how to modify a curve arc by arc. Here, B ∩ δ is tangent to two internal rays near
∂B, while B ′ ∩ δ is equal to two internal rays near ∂B ′.

σ of B ∩ δ is an open arc, and near the boundary ∂B, σ is either tangent to (if dB0 = 2) or
equal to (if dB0 ≥ 3) two internal rays (see Figure 13), say RB(α), RB(β). We define the
modificationM(σ ) of σ by

M(σ ) = RB(α) ∪ RB(β) ∪ {cB},
where cB is the center of B (it is possible that α = β). We then set

M(δ) =
⋃
B

⋃
σ

M(σ ),

where B ranges over all components B ∈ Comp(Bf ) with B ∩ δ �= ∅ and σ is taken over
all components of B ∩ δ.

By the law M(δ1 ∪ δ2) =M(δ1) ∪M(δ2), we obtain the modification of the
graphs Gk , which satisfy


0 =M(G0) ⊆M(G1) ⊆ · · · ⊆M(G�) ⊆ f −N(
0).

Let G =M(G�). Clearly one has f N(G) = 
0. Moreover,

f (G) =M(f (G�)) ⊆M(G0 ∪ G�) =M(G�) = G.

ν(G, ∞) = ν(G�, ∞) = 1.

(See Figure 14.)
Step 6: f −1(G) is connected. To prove the connectivity of f −1(G), we need to

investigate some properties of G and G� (given in Step 4) first.

FACT 4.7. Each component of Ĉ \ G� is a Jordan disk.

Proof. It is equivalent to show that ν(G�, z) = 1 for all z ∈ G�. Clearly this is true for
z = ∞ by the construction of G�. For z ∈ G� − {∞}, note that G� = ⋃

δ∈�\�0
δ

(here �, �0 are defined in Step 5) and ∞ ∈ ⋂
δ∈�\�0

δ. The observation G� \ {z} =⋃
δ∈�\�0

(δ \ {z}) and ∞ ∈ ⋂
δ∈�\�0

(δ \ {z}) imply that G� \ {z} is connected, and hence
z is not a cut point of G�.
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a1
b1

c1

c 1
2d1

•
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a 1
2

b 1
2

c 1
6

c 1
3d 1

2

c 5
6

c 2
3

•

•

•

•

•

FIGURE 14. This figure shows how to get the graph G (a) by a natural modification of G� (b; � = 2) in Step 5.

PROPOSITION 4.8. The graph G satisfies:
(1) any point in G ∩ J (f ) is not a cut point of G;
(2) the center of any immediate root basin is a non-cut point of G;
(3) for any immediate root basin B, the intersection G ∩ B is connected. In other words,

any Julia point in B ∩ J (f ) is linked to the center of B by an internal ray in G.

Proof. It is worth observing that

G =M(G�) =
⋃

δ∈�\�0

M(δ).

(1) For any z ∈ G ∩ J (f ) and z �= ∞, the facts

G \ {z} =
⋃

δ∈�\�0

(M(δ) \ {z}), ∞ ∈
⋂

δ∈�\�0

(M(δ) \ {z})

imply that G \ {z} is connected, and hence z is not a cut point of G.
(2) Recall that each curve δ ∈ �∗

2 ∪ �∗
3 ∪ · · · ∪ �∗

� starts at an immediate root basin
B ′ and terminates at a different one B ′′. Each curve δ ∈ �∗

1 will be connected to another
immediate root basin by another curve β ∈ �1 ∪ �2 ∪ · · · ∪ ��. It follows that after the
modification, the centers of immediate root basins are not cut points with respect to G.

(3) Note that each curve δ ∈ �∗
2 ∪ �∗

3 ∪ · · · ∪ �∗
� meets exactly two different immediate

root basins. By construction, if δ ∩ B �= ∅ for some immediate root basin B, then
M(δ) ∩ B is the closure of the union of two internal rays. (This implies, in particular,
thatM(δ) ∩ B has no isolated point.)

Note also for δ ∈ �1, the intersection M(δ) ∩ B is the closure of the union of two
(if dB = 2) or four (if dB > 2, see Figure 11) internal rays. Therefore,

G ∩ B =
⋃

δ∈�\�0

(M(δ) ∩ B)

is the closure of the union of finitely many internal rays, and hence connected.
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Dz

z
Γ

FIGURE 15. The graph � is the union of boundaries of the two symmetric triangles with only a cut point z
as shown above. Take a closed disk Dz around the point z such that Dz ∩ � is a star-like tree. The new graph
∂(� ∪ Dz) (= (� \ Dz) ∪ ∂Dz) has no cut points. In general, if a graph � possesses finitely many cut points
z1, . . . , zn, then the new graph ∂(� ∪ ⋃

1≤i≤nDzi
) has no cut points, where Dzi

are pairwise disjoint closed
disks associated to zi .

Remark 4.9.

(1) Proposition 4.8 implies that the only possible cut points in G are the centers of strictly
pre-periodic components B ∈ Comp(Bf ). These points are finitely many.

(2) Let � be a graph with finitely many cut points. There is a natural way to produce a
new graph from � such that it has no cut points; see Figure 15.

To prove the connectivity of f −1(G), it is equivalent to show that each component of
f −1(Ĉ \ G) is simply connected.

To this end, let D = ⋃
B �−1

B (D1/2) and X = Ĉ \D, where the union is taken over
all B ∈ Comp(Bf ) such that B ∩ G �= ∅, and �B : B → D is the Böttcher map of B. By
Proposition 4.8 and Remark 4.9, the graph G̃ := ∂(G ∪D) has no cut points. Then each
component of X \ G, which serves as a component of Ĉ \ G̃, is a Jordan disk. To show
that each component of f −1(Ĉ \ G) is simply connected, it is equivalent to show that each
component of f −1(X \ G) is simply connected.

In fact, this is an important property for puzzle pieces, so we have restated it as
Proposition 5.1, and the proof can be found there. (The slight difference is we deal with
f −1(X \ G) instead of f −1(Ĉ \ G), in order to apply Corollary 3.2.)

This completes proof of Step 6, and hence the whole proof of Theorem 4.1.

Remark 4.10. One may assume the number N in Theorem 4.1 is minimal, in the sense that
G ⊆ f −N(
0) and G � f −N+1(
0). This minimal N can not be controlled by the degree
of f, even in the cubic case.

In fact, we can show the following. For any integer n ≥ 1, there is a post-critically finite
cubic Newton map f, for which the invariant graph G constructed in Theorem 4.1 satisfies
that

G ⊆ f −n(
0), G � f −n+1(
0).

The proof is based on the deeper understanding of the parameter space [RWY]. Because
we will not use this fact in the paper, we skip its proof.
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4.3. Appendix: Shrinking lemma revisited. At the end of this section, we prove a version
of the shrinking lemma (see [LM, TY] for its original form), which plays an important role
in the proof of Lemma 4.5.

LEMMA 4.11. Let f be a rational map. Let {(En, Un)}n≥0 be a sequence of subsets in Ĉ,
such that, for all n ≥ 0:
(1) En � Un with En full continua and Un open sets (a set is said to be full if its

complement is connected);
(2) f (En+1) = En, f (Un+1) = Un;
(3) Un+1 ∩ U0 = ∅.
Then the spherical diameter of En converges to zero as n → ∞.

Proof. First observe that the sets Un are pair-wisely disjoint. If not, assume Un1 ∩ Un2 �= ∅
for some 0 ≤ n1 < n2. Then we have ∅ �= f n1(Un1 ∩ Un2) ⊆ U0 ∩ Un2−n1 , which contra-
dicts (3). Thus by ignoring finitely many pairs (En, Un), one may assume that

⋃
n≥0 Un

does not contain the critical values of f. Because E0 is full and E0 � U0, we can choose
a topological disk D0 such that E0 � D0 � U0. Then for each n, the unique component
Dn of (f n|Un)

−1(D0), which contains En, is a topological disk. Moreover, the map
f n : Dn → D0 is conformal, whose inverse is denoted by gn. Then {gn} forms a normal
family.

We claim that the limit map g∞ of any convergent subsequence {gnk
} is a constant

map. If not, then g∞(D0) is an open subset of Ĉ. Therefore, for any sufficiently large
integers k �= k′, the images gnk

(D0)(= Dnk
) and gnk′ (D0)(= Dnk′ ) will overlap, which is

impossible.
Finally, if limn diam(En) → 0 is not true, then there is a constant ε > 0 and a

subsequence {Elk } with diam(Elk ) ≥ ε. This is impossible, because by passing to a further
subsequence, the maps glk converge uniformly on E0 to a constant.

5. Branner–Hubbard–Yoccoz puzzle
In this section, we develop the Branner–Hubbard–Yoccoz puzzle theory for Newton maps,
using the invariant graph given by the preceding section.

5.1. Puzzles and ends. Let G be the graph given by Theorem 4.1. Recall that �B :
B → D is the Böttcher map of B ∈ Comp(Bf ). Let

X = Ĉ \
⋃
B

�−1
B (D1/2),

where the union is taken over all B ∈ Comp(Bf ) such that B ∩ G �= ∅. Clearly
f −1(X) ⊆ X. For any integer n ≥ 0, let Pn be the collection of all connected components
of f −n(X \ G). An element P ∈ Pn is called a puzzle piece of depth (or level) n ≥ 0.
Note that two distinct puzzle pieces P , Q are either disjoint (that is, P ∩ Q = ∅) or nested
(that is, P ⊆ Q or Q ⊆ P ).

An important fact about puzzle pieces is as follows.

https://doi.org/10.1017/etds.2021.168 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.168


1062 X. Wang et al

PROPOSITION 5.1. Let P , Q be two puzzle pieces with Q = f (P ). Then we have the
following two implications:
(1) Q is a Jordan disk �⇒ P is a Jordan disk;
(2) P ⊆ Q �⇒ ∞ ∈ ∂P ∩ ∂Q and f : P → Q is conformal.

Proof. Let l ≥ 1 be the depth of P. Note that there is a unique puzzle piece of depth l − 1,
say S, containing P. Let S0 be the puzzle piece of depth 0 containing P. By Proposition 4.8
and Remark 4.9, S0 is a Jordan disk. Note that the only possible fixed point in S0 is ∞ by
the construction. Thus the filled closure P̂S0 of P with respect to S0 contains at most one
fixed point, which can only be ∞ on its boundary.

To prove the two implications, we discuss the relation of Q and S.
Case 1: Q = S or equivalently P ⊆ Q. Then P̂S0 = P̂Q. If ∂Q ∩ ∂P contains a fixed

point q, then q = ∞, and in a neighborhood Nq of q, we have Np ∩ ∂P = 
0 ∩ Nq ∩ ∂P .
The f -invariance of the channel diagram 
0 implies that f (Nq ∩ ∂P ) ⊇ Nq ∩ ∂P in this
situation. Then, by applying Corollary 3.2 to the case (D, U) = (Q, P), we have

1 ≥ #Fix(f |P̂Q
) =

∑
V ⊆P̂Q,V ∈Comp(f −1(Q))

deg(f |∂V ) ≥ deg(f |∂P ) ≥ 1.

This implies that ∞ ∈ ∂P ∩ ∂Q, P̂S = P , and f : P → Q is conformal. In this case, we
also have the first implication.

Case 2: Q �= S or equivalently Q ∩ S = ∅. In this case, we only need to prove 1.
Assume that Q is a Jordan disk. If P is not a Jordan disk, then P̂S0 \ P is non-empty,
furthermore, it contains at least a component V of f −1(W) with W := Ĉ \ Q. Clearly
V ⊆ W . Applying Corollary 3.2 to the case (D, U) = (W , V ), we know that the filled
closure V̂W (⊆ P̂S ⊆ S) contains fixed points, which must be ∞. Therefore, we have

∞ ∈ ∂V ∩ ∂P ∩ ∂S ∩ ∂Q.

However, the local behavior of f near ∞ implies that in a neighborhood N(∞) of ∞, we
have P ∩ N(∞) ⊆ f (P ∩ N(∞)). It follows that Q = S. This is a contradiction.

LEMMA 5.2. The puzzle pieces satisfy the following properties:
(1) each puzzle piece is a Jordan disk;
(2) for any puzzle piece P and any immediate root basin B, the intersection P ∩ ∂B is

connected (caution: if B ∈ Comp(Bf ) is not an immediate root basin, then P ∩ ∂B

might be disconnected);
(3) for any puzzle piece P, the intersection P ∩ J (f ) is connected.

Proof. (1) By Proposition 4.8 and Remark 4.9, each puzzle piece of depth 0 is a Jordan
disk. By Proposition 5.1 and induction, all puzzle pieces are Jordan disks.

(2) By Proposition 4.8, the set B ∩ P is some sector SB(θ , θ ′; r), and P ∩ ∂B =⋂
0<s<1 SB(θ , θ ′; s), which is connected.
(3) By Proposition 4.8, if B ∈ Comp(Bf ) satisfies B ∩ P �= ∅ and B � P , then B ∩ P

is the union of finitely many sectors SB(θ , θ ′; r) (the reason is that the center cB of B might
be a cut point. In this case, P ∩ ∂B is a union of finitely many connected set). Note that
J (f ) ∩ SB(θ , θ ′; r) is connected, because J (f ) ∩ SB(θ , θ ′; r) = ⋂

0<s<1 SB(θ , θ ′; s).
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We aim to the show that any two points z1, z2 ∈ P ∩ J (f ) are contained in a connected
subset C ⊆ J (f ) ∩ P . Let γ be a Jordan arc in P connecting z1 and z2. Then γ ∩ F(f )

consists of countably many open segments {γi}i∈�. For each γi , if there is B0 ∈ Comp(Bf )

so that γi ⊆ B0 ⊆ P , we set Ci = ∂B0; otherwise, γi is contained in some sector
SB(θ , θ ′; r), and we set Ci = J (f ) ∩ SB(θ , θ ′; r). The set C = (γ ∩ J (f )) ∪ (

⋃
i∈� Ci)

is a connected subset of J (f ) ∩ P connecting z1 and z2.

It is worth observing that the number of unbounded puzzle pieces of depth n is
independent of n. This number is d0 = ∑

B(deg(f |B) − 1), where the sum is taken over all
immediate root basins B. Let P∞

n = {P ∞
n,1, . . . , P ∞

n,d0
} be the set of all unbounded puzzle

pieces of depth n, numbered in the way that P ∞
n+1,k ⊆ P ∞

n,k , for any n ≥ 0 and 1 ≤ k ≤ d0.
Clearly, the sets

Yn(∞) = P ∞
n,1 ∪ · · · ∪ P ∞

n,d0
, n ≥ 0

are closed neighborhoods of ∞. The grand orbit of ∞ is denoted by

�f =
⋃
k≥0

f −k{∞}.

For any z ∈ �f , let us define

Pz
n = {P ∈ Pn; z ∈ P }, Yn(z) =

⋃
P∈Pz

n

P .

For any point z ∈ Ĉ − Bf ∪ �f , its orbit avoids the graph G; therefore, the puzzle piece
of depth k ≥ 0 containing z is well defined, and is denoted by Pk(z). For z ∈ �f , let Pk(z)

be the interior of Yk(z). In this way, for all z ∈ Ĉ − Bf and all k ≥ 0, the piece Pk(z) is
well defined.

For any z ∈ Ĉ − Bf , the end of z, denoted by e(z), is defined by

e(z) =
⋂
k≥0

Pk(z).

PROPOSITION 5.3. For any z ∈ Ĉ − Bf and any integer k ≥ 0, there is an integer
nk = nk(z) > 0 with the property:

Pk+nk
(z) � Pk(z).

This implies, in particular, that e(z) = {z} for any z ∈ �f .

Proof. We first consider z ∈ �f . In this case, there is an integer N ≥ 0 with
f N(e(z)) = e(∞). To show the statement, it suffices to show e(∞) = {∞}.

By Proposition 5.1, for each n ≥ 1, the map f n : Pn(∞) → P0(∞) is conformal, and
the boundaries ∂Yn(∞), ∂Y0(∞) are Jordan curves. Therefore, f n : ∂Yn(∞) → ∂Y0(∞)

is a homeomorphism. We claim that YN(∞) � Y0(∞) for some large N. In fact, if
∂Yn(∞) ∩ ∂Y0(∞) �= ∅ for all n ≥ 1, then the relation Yn+1(∞) ⊆ Yn(∞) implies that

∂Yn+1(∞) ∩ ∂Y0(∞) ⊆ ∂Yn(∞) ∩ ∂Y0(∞).
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Therefore, ⋂
∂Yn(∞) �= ∅ and

⋂
∂Yn(∞) ⊆ �f ⊆ J (f ).

To see this, ∂Yn(∞) is bounded by some internal rays and sections of equipotential
curves of the form G−1

B (rn), where GB : B → [−∞, 0) is the Green function in B. The
potential rn → 0− as n → +∞. Hence, the intersection

⋂
∂Yn(∞) is contained in the

Julia set J (f ). Because ∂Yn(∞) ∩ J (f ) ⊆ �f for any n, we have⋂
∂Yn(∞) =

⋂
(∂Yn(∞) ∩ J (f )) ⊆ �f .

Take p ∈ ⋂
∂Yn(∞) and suppose f n0(p) = ∞. Clearly p �= ∞. This contradicts the

fact that f n0 : ∂Yn0(∞) → ∂Y0(∞) is a homeomorphism.
By the claim and applying the Schwarz lemma to the inverse of f N : YN(∞) →

Y0(∞), we have that e(∞) = ⋂
k YNk(∞) = {∞}.

For those z ∈ Ĉ − (Bf ∪ �f ), the idea of the proof is same as above. If there is an
integer k0 ≥ 0, such that ∂Pk0(z) ∩ ∂Pk0+l(z) �= ∅ for all l > 0, then the nested property
(that is, Pk0+l+1(z) ⊆ Pk0+l(z)) gives that

∂Pk0(z) ∩ ∂Pk0+l+1(z) ⊆ ∂Pk0(z) ∩ ∂Pk0+l(z).

Therefore,

∅ �=
⋂
l≥1

(∂Pk0(z) ∩ ∂Pk0+l(z)) =
⋂
l≥0

∂Pk0+l(z) ⊆ �f ∩ J (f ).

It follows that the puzzle pieces {Pk0+l(z)}l≥0 have a common boundary point ξ with
f m(ξ) = ∞ for some m ≥ 0. Applying the f m-action on these puzzle pieces, we get

∞ ∈ Pk0−m+l(f m(z)) ⊆ Yk0−m+l(∞) for all l ≥ m.

This gives that ∞ ∈ e(f m(z)) ⊆ e(∞). By the proven fact e(∞) = {∞}, we have
f m(z) = ∞. This contradicts the assumption z ∈ Ĉ − (Bf ∪ �f ).

We collect some facts about ends as follows:
(1) e(z) is either a singleton or a full continuum in Ĉ;
(2) f (e(z)) = e(f (z));
(3) for any z′ ∈ Ĉ − Bf with z′ �= z, based on the proven fact e(q) = {q} for any q ∈ �f

(see Proposition 5.3), we have that either

e(z′) = e(z) or e(z′) ∩ e(z) = ∅;

(4) by Lemma 5.2, e(z) = {z} implies the local connectivity of J (f ) at z. For any
immediate root basin B and any z ∈ ∂B, the fact e(z) ∩ ∂B = {z} implies the local
connectivity of ∂B at z.

Let E = {e(z); z ∈ Ĉ − Bf } be the collection of all ends. An end is trivial if it is a
singleton. An end e is called critical if it contains a critical point of f. The orbit orb(e) of
an end e ∈ E is orb(e) = {f k(e)}k≥0.
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An end e is preperiodic if f m+n(e) = f m(e) for some m ≥ 0, n ≥ 1. In particular, e is
called periodic if m = 0. If there is no such m, n, then e is called wandering. In this case,
its orbit orb(e) has infinitely many elements.

For each end e = e(z) with z ∈ Ĉ − Bf , let Pn(e) = Pn(z). It follows from
Proposition 5.3 that Pn(e) is the puzzle piece of depth n containing e.

Let (ek)k∈N be a sequence of wandering ends with distinct entries ek , the combinatorial
accumulation set A((ek)k∈N) consists of the ends e′ ∈ E, such that for any integer n > 0,
the index set {k ∈ N; ek ⊆ Pn(e′)} is infinite.

LEMMA 5.4. A((ek)k∈N) �= ∅.

Proof. For any n ≥ 0, recall that the collection Pn of puzzle pieces of depth n is a finite
set. We define the index set In and the puzzle piece Pn ∈ Pn inductively as follows. First,
there is a puzzle piece P0 ∈ P0 such that

I0 = {k ∈ N; ek ⊆ P0}
is an infinite set. Suppose that we have constructed the infinite index set Ij and the puzzle
piece Pj ∈ Pj for 0 ≤ j ≤ �, satisfying that

I0 ⊇ · · · ⊇ I�, P0 ⊇ · · · ⊇ P�.

Then one can find P�+1 ∈ P�+1 with P�+1 ⊆ P�, such that the index set

I�+1 = {k ∈ I�; ek ⊆ P�+1}
is an infinite set. Now let us define e′ = ⋂

n Pn.
To finish, we show e′ ∈ E, which implies that e′ ∈ A((ek)k∈N). To this end, we discuss

two cases. If e′ ∩ �f �= ∅, we take z ∈ e′ ∩ �f �= ∅, then the fact {z} ⊆ e′ = ⋂
n Pn ⊆⋂

n Yn(z) = {z} (by Proposition 5.3) implies that e′ = {z} = e(z). If e′ ∩ �f = ∅, we
take z ∈ e′, then e′ = ⋂

n Pn = ⋂
n Pn(z) = e(z). In either case, we have e′ ∈ E, which

completes the proof.

The combinatorial limit set ω(e) of a wandering end e ∈ E is defined by

ω(e) = A((f k(e))k∈N).

One may verify that ω(e) satisfies the following properties:
(1) ω(f (e)) = ω(e);
(2) f (ω(e)) ⊆ ω(e);
(3) for any wandering end e′ ∈ ω(e), we have ω(e′) ⊆ ω(e).

The first two follow from the definition of ω(e). We only verify the third one. Let
e′ ∈ ω(e) be a wandering end, and take e′′ ∈ ω(e′). By definition, for any n ≥ 0, the
index set Jn = {k ∈ N; f k(e′) ⊆ Pn(e′′)} is infinite. For k ∈ Jn, note that f k(e′) ∈ ω(e),
this implies that the index set {t ∈ N; f t (e) ⊆ Pn(f

k(e′)) = Pn(e′′)} is infinite. Therefore,
e′′ ∈ ω(e).

PROPOSITION 5.5. Let L > 0 be an integer with YL(∞) � Y0(∞). Let e be a wan-
dering end with e ⊆ YL(∞), then there is an (minimal) integer s = s(e) ≥ 0 with the
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•

Y0(∞)
Y1(∞)

YL(∞)

PL+1(fs(e))

YL+1(∞)

FIGURE 16. The puzzle pieces around ∞ (red dot). It may happen that ∂Y1(∞) ∩ ∂Y0(∞) �= ∅. Here YL(∞) �
Y0(∞) for some L ≥ 1. Assume e ⊆ YL(∞), then PL+1(f

s(e)) ⊆ YL(∞) \ YL+1(∞) for some minimal integer
s ≥ 0. Moreover PL+1(f

s(e)) � P0(f
s(e)).

following property:

PL+1(f
s(e)) � P0(f

s(e)) ∈ P∞
0

and f s : PL+s+1(e) → PL+1(f
s(e)) is conformal.

Proof. We first claim that e ∩ ∂Q = ∅ for any puzzle piece Q. Note that ∂Q ∩ J (f ) ⊂ �f

and ∂Q ∩ F(f ) ⊂ Bf . By definition, we have e ∩ Bf = ∅. If e ∩ ∂Q �= ∅, then e contains
a preperiodic point in �f by Proposition 5.3. It is impossible, as e is wandering.

Recall that Yk(∞) = ⋃
j P ∞

k,j and Pk(∞) is the interior of Yk(∞). By Propositions 5.1
and 5.3, for any k ≥ 0, the map f : Pk+1(∞) → Pk(∞) is one-to-one. The assumption

e ⊆ YL(∞) =
⋃
s≥0

(YL+s(∞) \ YL+s+1(∞))

implies that e ⊆ YL+s(∞) \ YL+s+1(∞) for some integer s ≥ 0. Then we can find
an index j with e ⊆ P ∞

L+s,j \ P ∞
L+s+1,j . Because for any k ≥ 0, the map f : P ∞

k,j \
P ∞

k+1,j → P ∞
k−1,j \ P ∞

k,j is a homeomorphism, we have that f s(e) ⊆ P ∞
L,j \ P ∞

L+1,j . Hence,
PL+1(f

s(e)) is bounded.
Because each unbounded puzzle piece is bounded by the fixed internal rays, their

iterated preimages, and equipotential curves, we see that PL+1(f s(e)) is disjoint from

0 ∪ ∂Y0(∞) (see Figure 16). This implies that

PL+1(f
s(e)) � P0(f

s(e)) = P ∞
0,j ∈ P∞

0 .

5.2. Strategy of the proof. To prove our main Theorem 1.1, it suffices to show that for
any immediate root basin B, we have

e(z) ∩ ∂B = {z} for all z ∈ ∂B. (∗)

To this end, we first need to classify all ends in E into two types: wandering ones and
preperiodic ones, which are denoted by Ew and Epp, respectively.
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The set Ew of wandering ends has a further decomposition:

Ew = Epp
w � Enr

w � Er
w,

where
Epp

w = {e ∈ Ew; Epp ∩ ω(e) �= ∅};
Enr

w = {e ∈ Ew; Epp ∩ ω(e) = ∅ and ω(e) �= ω(e′) for some e′ ∈ ω(e)};
Er

w = {e ∈ Ew; Epp ∩ ω(e) = ∅ and ω(e) = ω(e′) for all e′ ∈ ω(e)}.
The proof of the statement (∗) will be carried out in the following two sections. In §6,

we prove a stronger fact that any wandering end is a singleton. In §7, we prove that for any
pre-periodic end e, the intersection e ∩ ∂B is either empty or a singleton. These two cases
cover all situations.

In the rest of the paper, let Ecrit ⊆ E be the collection of all critical ends. Set κ = #Ecrit.
Recall that d is the degree of the Newton map f.

6. Wandering ends are trivial
In this section, we show that any wandering end is a singleton. The proof is based on the
following dichotomy: for any wandering end e, either
(1) e satisfies the bounded degree property; or
(2) ω(e) contains a persistently recurrent critical end.

The treatments of these two situations are different.

6.1. Bounded degree property implies triviality of ends.

Definition 6.1. An end e is said to have a bounded degree (BD for short) property if there
exist puzzle pieces {Pnk

(e)}, with nk → ∞ as k → ∞, and an integer D, such that

deg(f nk : Pnk
(e) → P0(f

nk (e))) ≤ D for all k ≥ 1. (�)

PROPOSITION 6.2. A wandering end e with BD property is trivial.

Proof. By assumption, there is a sequence of puzzle pieces {Pnk
(e)} satisfying (�). The

combinatorial accumulation setA((f nk (e))k∈N) of the sequence (f nk (e))k∈N satisfies

∅ �= A((f nk (e))k∈N) ⊆ ω(e).

Take e0 ∈ A((f nk (e))k∈N), note that for any n ≥ 0, the index set {k ∈ N; f nk (e) ⊆
Pn(e0)} is infinite.

To prove the proposition, we need to discuss two cases:
Case 1: e0 /∈ {e(z); z ∈ �f }. In this case, by Proposition 5.3, there is an integer L0 > 0

such that PL0(e0) � P0(e0). By passing to a subsequence, we may assume f nk (e) ⊆
PL0(e0) for all k ≥ 1. By pulling back the triple (f nk (e), PL0(e0), P0(e0)) along the orbit
e �→ f (e) �→ · · · �→ f nk (e), we get the non-degenerate annuli Pnk

(e) \ PL0+nk
(e), whose

moduli satisfy

mod(Pnk
(e) \ PL0+nk

(e)) ≥ 1
D

mod(P0(e0) \ PL0(e0)), for all k ≥ 1.

This implies that e = ⋂
Pk(e) is a singleton.
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Case 2: e0 ∈ {e(z); z ∈ �f }. In this case, replacing (f nk (e))k∈N by the new sequence
(f nk+l(e))k∈N (here l ≥ 0 is some integer) if necessary, we may assume e0 = e(∞). Recall
that Yn(∞) = ⋃

k P ∞
n,k and Pn(∞) is the interior of Yn(∞). Let L > 0 be an integer with

YL(∞) � Y0(∞).
By choosing a subsequence of {nk}k , we may assume that

f nk (e) ⊆ YL(∞) and deg(f nk : Pnk
(e) → P ∞

0,m) ≤ D

with P ∞
0,m ∈ P∞

0 and P ∞
0,m = P0(f

nk (e)), for all k ∈ N.
For each k, the assumption f nk (e) ⊆ YL(∞) = ⋃

s≥0(YL+s(∞) \ YL+s+1(∞)) implies
that there is a unique integer sk ≥ 0 such that f nk (e) ⊆ YL+sk (∞) \ YL+sk+1(∞). The
behavior of f near ∞ gives that P0(f

nk+j (e)) ≡ P ∞
0,m for all 0 ≤ j ≤ sk . By Proposition

5.5, we have

PL+1(f
nk+sk (e)) � P0(f

nk+sk (e)) ∈ P∞
0 .

We factor the map f nk+sk : Psk+nk
(e) → P0(f

sk+nk (e)) as

Pnk+sk (e)
f nk−−→ Psk (f

nk (e))
f sk−−→ P0(f

sk+nk (e))(= P ∞
0,m).

The first factor has degree at most D. For the second factor, note that f nk (e) ⊆
YL+sk (∞) ⊆ Ysk (∞), this implies that Psk (f

nk (e)) = P ∞
sk ,m. Hence, the map f sk :

Psk (f
nk (e)) → P0(f

sk+nk (e)) is conformal. So the degree of f nk+sk : Psk+nk
(e) →

P0(f
sk+nk (e)) is bounded above by D.

By pulling back the pair (PL+1(f
nk+sk (e)), P0(f

nk+sk (e)) along the orbit e �→ f (e) �→
· · · �→ f nk+sk (e) by f nk+sk , we get the annuli Ak = Psk+nk

(e) \ PL+1+nk+sk (e), whose
moduli have a uniform lower bound

mod(Ak) ≥ 1
D

mod(P0(f
nk+sk (e)) \ PL+1(f nk+sk (e)))

≥ 1
D

min{mod(P ∞
0,m \ Q); Q ∈ PL+1, Q � P ∞

0,m}.

This implies that e = ⋂
Pk(e) is a singleton.

Let e be a wandering end and P be a puzzle piece. The first entry time of e into P,
denoted by re(P ), is the minimal integer k ≥ 1 such that f k(e) ⊆ P . If no such integer
exists, we set re(P ) = ∞. If re(P ) �= ∞, we denote by Le(P ) the unique puzzle piece
containing e such that f re(P )(Le(P )) = P . Clearly, if P ∈ Pk for some k, then Le(P ) ∈
Pk+re(P ).

LEMMA 6.3. Let e be a wandering end and P be a puzzle piece. Suppose that the first
entry time r = re(P ) is finite, then:
(1) the r puzzle pieces Le(P ), . . . , f r−1(Le(P )) are pair-wisely disjoint;
(2) the degree of f r : Le(P ) → f r(Le(P )) = P is at most dκ ;
(3) any puzzle piece Q containing e such that f s(Q) = P for some s ≥ 1 is contained

in Le(P ).
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Proof. Write Qk = f k(Le(P )) for 0 ≤ k ≤ r − 1. (1) If Qk1 ∩ Qk2 �= ∅ for some
k1 < k2, then Qk1 ⊆ Qk2 . By pulling back (Qk1 , Qk2) along the orbit Q0 �→ · · · �→
Qr−1, we get the pairs (Qk1−1, Qk2−1), . . . , (Q0, Qk2−k1). It follows that e ⊆ Q0 ⊆
Qk2−k1 and f r−(k2−k1)(Qk2−k1) = Q. This obviously contradicts the definition of first
entry time.

(2) It is a direct consequence of 1, because each critical end appears in the orbit Q0 �→
· · · �→ Qr−1 at most once.

(3) If it is not true, we have s < r and f s(e) ⊆ P . This contradicts the definition of the
first entry time r.

PROPOSITION 6.4. Any end e ∈ Epp
w satisfies the BD property.

Proof. Let e ∈ Epp
w . The fact f (ω(e)) ⊆ ω(e) implies that ω(e) contains at least a periodic

end, say e0. Let p be the period of e0. Observe that p = 1 if and only if e0 = e(∞).
Case 1: e0 �= e(∞). Let N be a large integer so that PN(f k(e0)) \ f k(e0) contains no

critical points of f, for all 0 ≤ k < p. Let An(e0) = Pn(e0) \ Pn+1(e0) for all n ≥ 0. By
the choice of N, for any n ≥ N , any puzzle piece Q in An(e0) will be mapped, by some f k ,
into a puzzle piece in AN(e0) ∪ · · · ∪ AN+p−1(e0) conformally (because the choice of N
guarantees that there is no critical points along the orbit of Q).

For each n > N , let rn be the first entry time of e into Pn(e0). Clearly rn → ∞ as
n → ∞, and the degree of f rn : Le(Pn(e0)) → Pn(e0) is at most dκ (by Lemma 6.3). Note
that f rn(e) ⊆ Pn(e0) and f rn(e) �= e0, there is a unique integer sn ≥ 0 so that f rn(e) ⊆
An+sn(e0). It follows that Pn+sn+1(f

rn(e)) ⊆ An+sn(e0). So there is a minimal integer
tn ≥ 0 satisfying that f tn(Pn+sn+1(f

rn(e))) = Pn+sn−tn+1(f
rn+tn (e)) ⊆ An+sn−tn (e0) ∈

{AN(e0), . . . , AN+p−1(e0)}, here

N < n + sn − tn + 1 ≤ N + p for all n ≥ N .

We factor the map f rn+tn : Pn+sn+rn+1(e) → Pn+sn−tn+1(f
rn+tn (e)) as

Pn+sn+rn+1(e)
f rn−−→ Pn+sn+1(f

rn(e))
f tn−−→ Pn+sn−tn+1(f

rn+tn (e)).

The former has degree at most dκ , while the latter is conformal. Therefore, by choosing
a subsequence of n terms so that n + sn − tn + 1 equals a constant, we see that e satisfies
the BD property.

Case 2: e0 = e(∞). In this case, for any n ≥ 0, the index set {k ∈ N; f k(e) ⊆ Pn(∞)}
is infinite, implying that for some j independent of n, the index set {k ∈ N; f k(e) ⊆ P ∞

n,j }
is infinite. For each n ≥ 1, let rn be the first entry time of e into P ∞

n,j . Then the degree of
f rn : Le(P

∞
n,j ) → P ∞

n,j has upper bound dκ . By postcomposing the conformal map f n :
P ∞

n,j → P ∞
0,j , we see that the degree of f n+rn : Le(P

∞
n,j ) → P ∞

0,j is uniformly bounded
by dκ . Therefore, e also satisfies the BD property in this case.

PROPOSITION 6.5. Any end e ∈ Enr
w satisfies the BD property.

Proof. By definition, there exists e′ ∈ ω(e) with ω(e′) �= ω(e). As is pointed out before
that ω(e′) is a proper subset of ω(e), hence there is an end e0 ∈ ω(e) \ ω(e′). For
sufficiently large N, we have orb(e′) ∩ PN(e0) = ∅.

https://doi.org/10.1017/etds.2021.168 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.168


1070 X. Wang et al

For any n, let rn be the first entry time of e into Pn(e′). Then Le(Pn(e′)) = Pn+rn(e)
and the degree of f rn : Le(Pn(e′)) → Pn(e′) is bounded above by dκ (by Lemma 6.3).
Note that f rn(e) �= e′, otherwise, it would happen that ω(e′) = ω(e), which is impossible.
It then follows that rn → ∞ as n → ∞.

Because e0 ∈ ω(e), the orbit of f rn(e) will meet PN(e0). Let sn be the first entry
time sn of f rn(e) into PN(e0). Then Lf rn (e)(PN(e0)) = PN+sn(f

rn(e)) and the map
f sn : Lf rn (e)(PN(e0)) → PN(e0) has degree at most dκ .

Note that both Lf rn (e)(PN(e0)) and Pn(e′) contain f rn(e). We claim that
Lf rn (e)(PN(e0)) is a proper subset of Pn(e′). Because, otherwise, one has Pn(e′) ⊆
Lf rn (e)(PN(e0)). This would imply orb(e′) ∩ PN(e0) �= ∅, which contradicts our
assumption on PN(e0).

Then we pull back Lf rn (e)(PN(e0)) = PN+sn(f
rn(e)) along the orbit e �→ · · · �→

f rn(e) by f rn , and get the puzzle piece PN+rn+sn(e) containing e. Further, the degree
of the map

f rn+sn : PN+rn+sn(e) → PN(e0)

is at most d2κ . This implies that e has BD property.

6.2. The case e ∈ Er
w. In this part, we will show that any e ∈ Er

w is trivial. By definition
of Er

w, each end e′ ∈ ω(e) is wandering, satisfying that

ω(e′) = ω(e) and e′ ∈ ω(e′).

A wandering end e′ with the property e′ ∈ ω(e′) is called combinatorially recurrent.
Clearly, all ends in ω(e) are combinatorially recurrent.

We first discuss an easy case (Lemma 6.6). Recall that Ecrit is the set of all critical ends.
Let c ∈ Ecrit ∩ Ew be a critical wandering end. A puzzle piece Pn+k(c) with k ≥ 1 is called
a successor of Pn(c) if:
(1) f k(Pn+k(c)) = Pn(c); and
(2) each critical end appears at most once along the orbit

Pn+k(c) �→ Pn+k−1(f (c)) �→ · · · �→ Pn+1(f
k−1(c)).

By definition, if Pn+k(c) is a successor of Pn(c), then

deg(f k : Pn+k(c) → Pn(c)) ≤ dκ ,

here, recall that κ = #Ecrit.

LEMMA 6.6. An end e ∈ Er
w is trivial, if it satisfies one of the following:

(1) ω(e) ∩ Ecrit = ∅;
(2) some piece Pn0(c) of c ∈ ω(e) ∩ Ecrit has infinitely many successors.

Proof. We will show that e satisfies the BD property, then the triviality of e follows from
Proposition 6.2.
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(1) The assumption ω(e) ∩ Ecrit = ∅ implies that there is an integer N > 0 such that
the index set {

k ≥ 0; f k(e) ⊆
⋃

c∈Ecrit

PN(c)
}

is finite. Let m be the cardinality of this index set. One sees that for each k ≥ 1, the degree
of f k : PN+k(e) → PN(f k(e)) is bounded above by dm.

(2) Let {Pnk
(c)}k≥1 be all successors of Pn0(c) with n1 < n2 < · · · → ∞. By the

assumption that c ∈ ω(e), for each k ≥ 1, there is a well defined first entry time rk of e into
Pnk

(c). Then Le(Pnk
(c)) = Pnk+rk (e) and the degree of f nk+rk−n0 : Pnk+rk (e) → Pn0(c)

is bounded above by

deg(f rk : Pnk+rk (e) → Pnk
(c)) · deg(f nk−n0 : Pnk

(c) → Pn0(c)) ≤ d2κ .

We see that e satisfies the BD property in both cases.

By Lemma 6.6, we only need to discuss the ends e ∈ Er
w satisfying that ω(e) ∩ Ecrit �= ∅

and that for any c ∈ ω(e) ∩ Ecrit, and any n ≥ 0, the puzzle piece Pn(c) has finitely many
successors. To show the triviality of ends, we first discuss the critical case.

A critical end c ∈ Ecrit ∩ Er
w is called persistently recurrent in the combinatorial sense,

if it satisfies:
(1) c ∈ ω(c); and
(2) for any c′ ∈ ω(c) ∩ Ecrit and any k ≥ 1, the puzzle piece Pk(c′) has only finitely

many successors.
We first choose a large integer L0 > 0 so that PL0(c) � P0(c) and:

(1) for any different c1, c2 ∈ Ecrit ∩ ω(c), one has PL0(c1) ∩ PL0(c2) �= ∅;
(2) for any c1, c2 ∈ Ecrit, we have the implication

c1 /∈ ω(c2) �⇒ c1 ∩
⋃
k≥1

PL0(f
k(c2)) = ∅.

Let [c] = ω(c) ∩ Ecrit and orb([c]) = ⋃
c′∈[c]

⋃
k≥0 f k(c′). The persistent recurrence

of c allows one to construct the principal nest, whose significant properties are summarized
as follows.

THEOREM 6.7. Assume c is persistently recurrent and L0 > 0 is chosen as above. Then
there is a nest of c-puzzle pieces

Q0(c) ⊃ Q1(c) ⊃ Q′
1(c) ⊃ Q2(c) ⊃ Q′

2(c) ⊃ . . . ,

where each puzzle piece is a suitable pull back of Q0(c) = PL0(c) by some iterate of f,
satisfying the following properties.
(1) There exist integers D0 > 0, nj > mj ≥ 1 for all j ≥ 1, so that

f mj : Q′
j (c) → Qj(c), f nj : Qj+1(c) → Qj(c)

are proper maps of degree ≤ D0, and f nj (Q′
j+1(c)) ⊆ Q′

j (c).
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(2) The gap dj of the depths between Qj and Q′
j satisfies

dj → +∞ as j → +∞.

(3) For all j ≥ 1,

(Qj (c) − Q′
j (c)) ∩ orb([c]) = ∅.

(4) We have the following asymptotic lower bound of moduli,

lim inf
j→+∞ mod(Qj (c) − Q′

j (c)) > 0.

The construction of the principal nest is attributed to Kahn and Lyubich [KL1] in the
unicritical case, and to Kozlovski, Shen and van Strien [KSS] in the multicritical case. The
complex bounds are proven by Kahn and Lyubich [KL1, KL2] (unicritical case), and by
Kozlovski and van Strien [KS] and Qiu and Yin [QY] independently (multicritical case).
The interested readers may see these references for a detailed construction of the nest
and the proof of its properties. We remark that in our setting, the annuli Qj(c) − Q′

j (c)
might be degenerate for the first few indices j. However, because of the growth of the gaps
dj , the annuli Qj(c) − Q′

j (c) will be non-degenerate when j is large enough. That is the
reason why we use the term ‘asymptotic lower bound’ instead of ‘uniform lower bound’ in
Theorem 6.7(4).

PROPOSITION 6.8. The end e ∈ Er
w is trivial, if ω(e) ∩ Ecrit contains a persistently

recurrent end c.

Proof. Let (Qj (c), Q′
j (c)) be the puzzle pieces of principal nest given by Theorem 6.7.

For each j ≥ 1, let rj be the first entry time of e into Q′
j (c). Let T ′

j (e) = Le(Q
′
j (c)) and

Tj (e) be the component of f −rj (Qj (c)) containing e. Then Theorem 6.7(3) implies that

deg(f rj |T ′
j (e)) = deg(f rj |Tj (e)) ≤ dκ .

Hence, by Theorem 6.7(4) and letting μ be the asymptotic lower bound of moduli, for all
large j, we have

mod(Tj (e) \ T ′
j (e)) ≥ mod(Qk(c) \ Q′

j (c))/d
κ ≥ μ/dκ .

It follows that e is trivial.

7. The renormalizable case
As we have seen in the previous section, wandering ends are always trivial. However,
preperiodic ends can be non-trivial (see Lemma 7.1). Nevertheless, the intersection of such
an end and the boundary of an immediate root basin is trivial. The aim of this section is to
prove this statement.

We first introduce the renormalization of Newton maps. We say that the Newton map f
is renormalizable if there exist an integer p ≥ 1 and two multi-connected domains U , V

with U � V ⊆ C such that f p : U → V is a proper mapping with a connected filled Julia
set K(f p|U) = ⋂

k≥0 f −kp(U). The triple (f p, U , V ) is called a renormalization of f.
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Note that in the definition, we assume ∞ /∈ V to exclude the existence of a f -fixed point in
K(f p|U).

In the definition, one may further require that U , V are topological disks, and this kind
of renormalization is called P-renormalization (here ‘P’ refers to ‘polynomial-like’). For
Newton maps, we have

f is renormalizable ⇐⇒ f is P-renormalizable.

To see this, we only need to show the ‘�⇒’ part. Suppose that (f p, U , V ) is a
renormalization of f, with U , V multiconnected and K(f p|U) connected. The assumption
∞ /∈ K(f p|U) implies that K(f p|U) is disjoint from the boundary of puzzle pieces,
and hence contained in a periodic end e ∈ E, which satisfies f p(e) = e. Consider the
map f �p : P�p(e) → P0(e), choose an integer � > 0 so that P�p(e) � P0(e), we see that
(f �p, P�p(e), P0(e)) is a P-renormalization of f.

Because of this equivalence, when we are discussing the renormalizations of Newton
maps, we always require that U , V are topological disks.

Periodic ends are closely related to renormalizations.

LEMMA 7.1. Let e be a periodic end, with period p ≥ 1.
(1) If none of e, . . . , f p−1(e) is critical, then e is a singleton.
(2) If some end of e, . . . , f p−1(e) is critical, then f is renormalizable. In this case, e is

the filled Julia set of a renormalization.

Proof. Choose a large integer N > 0 so that

(PN(e) ∪ · · · ∪ PN(f p−1(e))) \ (e ∪ · · · ∪ f p−1(e))

contains no critical point of f. By Proposition 5.3, there is an integer � > 0 so that
PN+�p(e) � PN(e). If none of e, . . . , f p−1(e) is critical, then f �p : PN+�p(e) → PN(e)
is conformal. Applying the Schwarz lemma to its inverse, we see that e is singleton. If
some end of e, . . . , f p−1(e) is critical, then (f �p, PN+�p(e), PN(e)) is a renormalization
of f. In this case, the filled Julia set K(f �p|PN+�p(e)) = ⋂

k≥1 PN+k�p(e) = e.

The main result of this section is the following.

PROPOSITION 7.2. For any preperiodic end e ∈ Epp and any immediate root basin
B ∈ Comp(Bf ), the intersection e ∩ B is either empty or a singleton.

Proof. It suffices to treat the periodic case. We may assume e is non-trivial, of period
p > 1 (note that p = 1 if and only if e = e(∞) = {∞}), and e ∩ B �= ∅ for some
immediate root basin B. The idea of the proof is to construct a Jordan curve separating
e from B.

By Proposition 5.3, one can find two puzzle pieces Q1 and Q0 = f n0p(Q1), such that
e � Q1 � Q0. Assume the depths of Q1, Q0 are large enough so that all critical points of
g := f n0p : Q1 → Q0 are contained in e. Let de = deg(g|Q1), then de ≥ 2, otherwise, g
is conformal and the Schwarz lemma would imply that e is trivial.
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FIGURE 17. Some domains and construction of curves converging to q̂.

Write Qk = g−k(Q0) for k ≥ 1. By Proposition 4.8, for all k ≥ 0, there exist αk , βk ∈
R/Z with αk < βk , and rk ∈ (0, 1) such that

Qk ∩ B = Qk ∩ B = SB(αk , βk; rk).

Because f |B is conjugate to z �→ zdB on D, we have

αk ≤ αk+1 < · · · < βk+1 ≤ βk , |βk+1 − αk+1| = |βk − αk|/dn0p
B .

Therefore, the sequences {αk} and {βk} have a common limit θ = limαk = limβk . The
internal ray RB(θ) of B is invariant under g, and hence lands at a g-fixed point q ∈ e ∩ ∂B.

In the following, we show e ∩ ∂B = {q}. To this end, let ηε = RB(θ) ∩ Qε with ε ∈
{0, 1}. Let φ : Ĉ \ e → Ĉ \ D be a Riemann mapping, and denote

(̂ηε, B̂, Q̂ε) = (φ(ηε), φ(B), φ(Qε \ e)).

Then ĝ = φ ◦ g ◦ φ−1 : Q̂1 → Q̂0 is a covering map between annuli, of degree de. By the
Schwarz reflection principle, we may assume that ĝ is holomorphic in a neighborhood of
∂D. By [Mi06, Corollary 17.10] the arc η̂ε lands at a point, say q̂, on ∂D. Because the arc
η̂ε is evidently ĝ-invariant, the point q̂ is ĝ-fixed. See Figure 17.

Let �+, �− be the two components of ĝ−1(Q̂0 \ η̂0) such that η̂1 ⊆ ∂�+ ∩ ∂�−.
Clearly, �+, �− are Jordan disks.

CLAIM 1. The map ĝ has exactly one fixed point on �+ (or �−). This fixed point is
q̂ ∈ ∂�+ ∩ ∂�−.

Proof. Let �∗+, �∗−, η̂∗
1 be the reflection part of �+, �−, η̂1 with respect to the circle ∂D.

Let Y be the interior of the set

�∗+ ∪ �∗− ∪ η̂∗
1 ∪ �+ ∪ �− ∪ η̂1 ∪ ∂D.

Clearly, Y is an open topological disk. The Schwarz reflection principle guarantees that
ĝ can be defined in Y and Y � ĝ(Y ). Let X be the component of ĝ−1(Y ) containing q̂.
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One may verify that X � Y and ĝ : X → Y is conformal. Applying the Schwarz lemma to
ĝ|−1

X : Y → X, we conclude that ĝ has exactly one repelling fixed point on X. This fixed
point is q̂ ∈ ∂�+ ∩ ∂�−.

Let �0
ε = �ε \ η̂1 for ε ∈ {±}. We consider the bijections

ĝε = ĝ|�0
ε

: �0
ε → Q̂0, ε ∈ {±}.

One may verify that ĝε is conformal in the interior of �0
ε .

CLAIM 2. For each ε ∈ {±}, let us define a sequence of closed Jordan arcs

γ̂ 0
ε = (φ(∂Q1) \ �0

ε) ∪ (̂η0 \ η̂1), and γ̂ k
ε = ĝ−k

ε (γ̂ 0
ε ), k ≥ 1.

Then γ̂ε = ⋃
k≥1 γ̂ k

ε is a Jordan arc in �0
ε , satisfying that:

(1) γ̂ε is disjoint from D;
(2) γ̂ε is disjoint from the closure of B̂;
(3) γ̂ε converges to the ĝ-fixed point q̂.

Proof. We only prove the case ε = +, the other is similar.
(1) It suffices to note that e has no intersection with ∂Q1 ∪ (η0 \ η1).
(2) Note that

γ̂+ ∩ B̂ = ∅ ⇐⇒ γ̂ 1+ ∩ B̂ = ∅ ⇐⇒φ−1(γ̂ 1+) ∩ B = ∅.

By Proposition 4.8,

φ−1(γ̂ 1+) ⊆ Q1 \ B = Q1 \ SB(α1, β1; r1) �⇒ φ−1(γ̂ 1+) ∩ B = ∅.

(3) Note that γ̂ 2+ � Y and ĝ−1 : Y → X is strictly contracting, we conclude that γ̂+
converges to the ĝ-fixed point q̂.

CLAIM 3. For each ε ∈ {±}, the curve γε = φ−1(γ̂ε) satisfies that γε ∩ (e ∪ B) = ∅ and
converges to the g-fixed point q.

Proof. By Claim 2, we see that γε is disjoint from e ∪ B. Let

V = φ−1(Y \ D), U = φ−1(X \ D).

Clearly, V is a topological disk, V ⊆ Q1 and q ∈ ∂V , and g : U → V is conformal. Let
h = g|−1

U : V → U . Because the ray RB(θ) converges to q, the family of maps {hk}k∈N
converge uniformly on RB(θ) ∩ (Q0 \ Q1) to the boundary point q. By Denjoy–Wolff’s
theorem (see [D, W]), the maps {hk}k∈N converge uniformly on any compact subset of V,
in particular on γ 2+ = φ−1(γ̂ 2+) � V , to the boundary point q. Hence, γ+ converges to q.

Similar argument works for γ−.

Now we define the Jordan curve by

γ =
{

γ+ ∪ γ− ∪ {q} ∪ (∂Q1 \ ∂V ) if de ≥ 3,

(γ+ ∪ γ− ∪ {q}) \ g−1(η0 \ η1) if de = 2.
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Then the sets B \ {q} and e \ {q} are in different components of Ĉ − γ . It follows that
e ∩ B = {q}, which completes the proof.

8. Proof of the main theorem
In this section, we will complete the proof of Theorem 1.1. At the end, we give some
concluding remarks.

8.1. Proof of Theorem 1.1. To prove the local connectivity of ∂B, it is equivalent to
show that for any immediate root basin B ∈ Comp(Bf ), and any z ∈ ∂B, the intersection
e(z) ∩ ∂B is a singleton.

This actually follows from the decomposition

E = Epp � Epp
w � Enr

w � Er
w

and §§6 and 7.
It remains to show that ∂B is a Jordan curve iff dB = deg(f |B) = 2. In fact, if dB ≥ 3,

then there are dB − 1 ≥ 2 internal rays in B, landing at ∞, so ∂B is not a Jordan curve. If
dB = 2, it follows from Lemma 8.1 and Corollaries 8.2, 8.3 (see below) that ∂B is a Jordan
curve.

LEMMA 8.1. Let B ∈ Comp(Bf ). If two different internal rays RB(θ1), RB(θ2) land at the
same point, then

f (RB(θ1)) �= f (RB(θ2)).

Proof. We need to discuss two cases: f (B) = B and f (B) �= B.
Case 1: f (B) = B. In this case, f |B is conjugate to the map zdB |D. To discuss the

relative position of the internal rays, we need to consider the angle tupling map on the
circle. Let mdB

: t �→ dBt (mod Z) be the angle tupling map on R/Z. Note that S0 :=
{0/(dB − 1), . . . , (dB − 2)/(dB − 1)} is the set of fixed points of mdB

. The components
of R/Z \ S0 are denoted by Ik = (k/(dB − 1), (k + 1)/(dB − 1)), 0 ≤ k ≤ dB − 2.

First, note that the statement is true when one of θ1, θ2 is in S0. In the following,
we assume θ1, θ2 /∈ S0. We will prove by contradiction. If f (RB(θ1)) = f (RB(θ2)), the
fact that

⋃
θ∈S0

RB(θ) divides B into dB − 1 parts implies that one of them contains
RB(θ1), RB(θ2), together with their common landing point z. Without loss of generality,
we assume

0 < θ1 < θ2 < 1/(dB − 1).

The assumption implies that θ1, θ2 ∈ I0. Consider the action of mdB
on the open arc I0.

Let S1 = f −1(S0) ∩ I0. Then S1 = {1/dB(dB − 1), . . . , (dB − 1)/dB(dB − 1)}. Because
mdB

is injective on S1, the assumption f (RB(θ1)) = f (RB(θ2)) implies that θ1, θ2 /∈ S1.
The set I0 \ S1 consists of dB components:

Jk =
(

k − 1
dB(dB − 1)

,
k

dB(dB − 1)

)
, 1 ≤ k ≤ dB .
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Note that on each Jk , the map mdB
is one-to-one. Thus, θ1, θ2 belong to distinct

Jk terms. Because mdB
(J1) = mdB

(JdB
) = I0, we conclude that θ1 ∈ J1, θ2 = θ1 +

(1/dB) ∈ JdB
. For k ∈ {1, dB}, we denote by θ1,k , θ2,k ∈ Jk such that mdB

(θ1,k) =
θ1, mdB

(θ2,k) = θ2, then we have

θ1,1 = θ1

dB

, θ2,1 = 1
dB

(
θ1 + 1

dB

)
, θ1,dB

= θ1,1 + 1
dB

, θ2,dB
= θ2,1 + 1

dB

.

It is easy to see that θ1,1 < θ1 < θ2,1 < θ1,dB
< θ2 < θ2,dB

. It follows that RB(θ2,1) ∪
RB(θ1,dB

) ⊆ SB(θ1, θ2; 0).
Let W be the component of Ĉ − RB(θ1) ∪ RB(θ2) such that ∞ /∈ W . Clearly, W

contains no fixed point, because W is disjoint from the channel graph 
0 which contains
all fixed points of f. By the above discussion, there is a component V of f −1(W), such that
V contains SB(θ1,1, θ2,1; 0) (or SB(θ1,dB

, θ2,dB
; 0)). The facts

RB(θ1) ⊆ SB(θ1,1, θ2,1; 0) and ∂V ∩ J (f ) ⊆ f −1(q)

imply that ∂V contains the common landing point q of RB(θ1), RB(θ2). Because f (∂V ∩
J (f )) ⊆ ∂W ∩ J (f ) = {q}, we see that q is a fixed point of f, which is necessarily ∞.
This contradicts the assumption θ1, θ2 /∈ S0.

Case 2: f (B) �= B. Assume f (RB(θ1)) = f (RB(θ2)). Let U ⊆ f (B) be a Jordan disk,
whose boundary passes through two endpoints of f (RB(θ1)). Let D = Ĉ \ U .

Let W be the component of Ĉ − RB(θ1) ∪ RB(θ2) such that W ∩ 
0 = ∅. Then W

contains no fixed points of f, because all fixed points of f are contained in the channel graph

0. Clearly Ĉ \ f (RB(θ1)) ⊆ f (W) and W ⊆ D. There is a component V of f −1(D)

contained in W. In particular, V contains no fixed point of f. By Corollary 3.2, there is at
least one fixed point in V . This is a contradiction.

COROLLARY 8.2. For any B ∈ Comp(Bf ) and any z ∈ ∂B, let μB(z) be the number of
internal rays in B landing at z. Then we have

μB(z) ≤ μf (B)(f (z)) for all z ∈ ∂B.

In particular,

μB(z)

{
= 1 if z ∈ ∂B \ �f ,

≤ df �(B) − 1 if z ∈ ∂B ∩ �f ,

where � ∈ N is chosen so that f �(B) is fixed.

Proof. By Lemma 8.1, one has

μB(z) ≤ μf (B)(f (z)) for all B ∈ Comp(Bf ), for all z ∈ ∂B.

For z ∈ ∂B ∩ �f , let � ∈ N be chosen so that f �(z) = ∞ and f �(B) fixed, then

μB(z) ≤ μf �(B)(∞) = df �(B) − 1.

To prove μB(z) = 1 for z ∈ ∂B \ �f , it suffices to consider the fixed case: f (B) = B.
In this case, for any z ∈ ∂B \ �f , if μB(z) ≥ 2, then there are two internal rays
RB(t1), RB(t2), with t1 < t2, landing at z. It follows that RB(t1), RB(t2) are contained in
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FIGURE 18. This degree four Newton map f sends points z2 �→ z1 �→ z0 = ∞ and Fatou components B ′ �→
B �→ B. As shown above, z1 has two non-homotopic accesses γ1, γ2 from B, while z2 has one access γ ′

2 from B
and another access γ ′

1 from B ′, here f (γ ′
k) = γk , k ∈ {1, 2}.

the same component of Ĉ − �B , where �B = ⋃
0≤k≤dB−2 RB(k/(dB − 1)). This implies

that

0 < t2 − t1 < 1/(dB − 1).

It follows that for all k ≥ 0, the two rays RB(dk
Bt1), RB(dk

Bt2) land at the common point
f k(z). However, the assumption z ∈ ∂B \ �f implies for k0 ≥ 1, satisfying that

d
k0
B (t2 − t1) > 1/(dB − 1) ≥ d

k0−1
B (t2 − t1),

the rays RB(d
k0
B t1), RB(d

k0
B t2) are contained in different components of Ĉ − �B , and hence

can not land at the same point. This is a contradiction.

As a consequence of Corollary 8.2, if df �(B) = 2, we have μB(z) = 1 for all z ∈ ∂B.
This fact can be stated in the following form.

COROLLARY 8.3. For any B ∈ Comp(Bf ) which is eventually iterated to an immediate
root basin B0 with dB0 = 2, the boundary ∂B is a Jordan curve.

We remark that for Corollary 8.2, when f (B) = B and dB ≥ 3, it can happen that for
some z ∈ ∂B ∩ �f , the strict inequality

μB(z) < dB − 1

holds. Figure 18 provides such an example. In fact, we have an even more interesting
example.

Example 8.4. It can also happen that for some B ∈ Comp(Bf ) which is eventually iterated
to an immediate root basin B0 with dB0 > 2, and such that B �= B0, the boundary ∂B is a
Jordan curve.

Figure 19 gives an example of degree five Newton map f, with an immediate root basin
B0 such that dB0 = 3. For this example, the boundary of any B ∈ Comp(Bf ) \ {B0} is a
Jordan curve.
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B0 ∞

γ

FIGURE 19. There are two internal rays in B0 converging to ∞. The union of their closures gives a Jordan curve γ .
Its preimage f −1(γ ) consists of three Jordan curves: one is γ ; the other two are mapped onto γ by degree two,

and hence each encloses a critical point.

8.2. Concluding remarks. There are two by-products of our whole proof.

COROLLARY 8.5. The following hold.
(1) The Julia set J (f ) of a non-renormalizable Newton map f is locally connected.
(2) A wandering continuum E ⊆ J (f ) of the Newton map f will eventually be iterated

into the filled Julia set of a renormalization. (A continuum (compact set, which is
connected and non-singleton) E is called wandering under f, if f m(E) ∩ f n(E) = ∅
for all 0 ≤ m < n.)

Proof. To see (1), it suffices to observe that for a non-renormalizable Newton map f, each
periodic end is a singleton (by Lemma 7.1). Combining §6, we see that all possible type of
ends are trivial.

To see (2), note that ∞ /∈ E, which implies that E is contained in some end e. If e is
wandering, then it is trivial by §6. This is impossible because E is a continuum. So e is
preperiodic. By Lemma 7.1, for some k ≥ 0, the end f k(e) is periodic and equal to a filled
Julia set of a renormalization.
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[Ba] K. Barański. From Newton’s method to exotic basins Part I: the parameter space. Fund. Math. 158
(1998), 249–288.

https://doi.org/10.1017/etds.2021.168 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.168


1080 X. Wang et al

[Be] W. Bergweiler. Newton’s method and a class of meromorphic functions without wandering domains.
Ergod. Th. & Dynam. Sys. 13 (1993) 231–247.

[BFJK1] K. Baranski, N. Fagella, X. Jarque and B. Karpinska. On the connectivity of the Julia sets of
meromorphic functions. Invent. Math. 198(3) (2014), 591–636.

[BFJK2] K. Baranski, N. Fagella, X. Jarque and B. Karpinska. Connectivity of Julia sets of Newton maps: a
unified approach. Rev. Mat. Iberoam. 34(3) (2018), 1211–1228.

[C] A. Cayley. Desiderata and suggestions: no. 3. The Newton–Fourier imaginary problem. Amer. J.
Math. 2(1) (1879), 97.

[CGZ] G. Cui, Y. Gao and J. Zeng. Invariant graphs of rational maps. Preprint, 2019, arXiv:1907.02870.
[D] A. Denjoy. Sur l’itération des fonctions analytiques. C. R. Math. Acad. Sci. Paris 182 (1926), 255–257.
[DMRS] K. Drach, Y. Mikulich, J. Rückert and D. Schleicher. A combinatorial classification of postcritically

fixed Newton maps. Ergod. Th. & Dynam. Sys. 39(11) (2019), 2983–3014.
[He] J. Head. The combinatorics of Newtons method for cubic polynomials. Thesis, Cornell University,

1987.
[HSS] J. Hubbard, D. Schleicher and S. Sutherland. How to find all roots of complex polynomials by

Newton’s method. Invent. Math. 146 (2001), 1–33.
[KL1] J. Kahn and M. Lyubich. Local connectivity of Julia sets for unicritical polynomials. Ann. of Math.

(2) 170 (2009), 413–426.
[KL2] J. Kahn and M. Lyubich. The Quasi–Additivity law in conformal geometry. Ann. of Math. (2) 169

(2009), 561–593.
[KS] O. Kozlovski and S. van Strien. Local connectivity and quasi-conformal rigidity of

non-renormalizable polynomials. Proc. Lond. Math. Soc. (2) 99 (2009), 275–296.
[KSS] O. Kozlovski, W. Shen and S. van Strien. Rigidity for real polynomials. Ann. of Math. (2) 165 (2007),

749–841.
[LM] M. Lyubich and Y. Minsky. Laminations in holomorphic dynamics. J. Differential Geom. 47 (1997),

17–94.
[Mi06] J. Milnor. Dynamics in One Complex Variable. Princeton University Press, Princeton, NJ, 2006.
[MRS] Y. Mikulich, J. Rückert and D. Schleicher. A combinatorial classification of post-critically fixed

Newton maps. Preprint, 2018, arXiv:1510.02771v1.
[Pr] F. Przytycki. Remarks on the simple connectedness of basins of sinks for iterations of rational

maps. Collection: Dynamical Systems and Ergodic Theory (Warsaw, 1986). Vol. 23. Banach Center
Publications, Warsaw, 1989, pp. 229–235.

[QY] W. Qiu and Y. Yin. Proof of the Branner–Hubbard conjecture on Cantor Julia sets. Sci. China Ser. A
52 (2009), 45–65.

[Ro07] R. Roeder. Topology for the basins of attraction of Newton’s method in two complex variables: linking
with currents. J. Geom. Anal. 17(1) (2007), 107–146.

[Ro08] P. Roesch. On local connectivity for the Julia set of rational maps: Newton’s famous example. Ann.
of Math. (2) 165 (2008), 1–48.

[RS] J. Rückert and D. Schleicher. On Newton’s method for entire functions. J. Lond. Math. Soc. (2) 75(3)
(2007), 659–676.

[RWY] P. Roesch, X. Wang and Y. Yin. Moduli space of cubic Newton maps. Adv. Math. 322 (2017), 1–59.
[RY] P. Roesch and Y. Yin. Bounded critical Fatou components are Jordan domains for polynomials. Sci.

China Math. 65 (2022), 331–358.
[Sh] M. Shishikura. The connectivity of the Julia set and fixed points. Complex Dynamics: Families and

Friends. Ed. D. Schleicher. A. K. Peters, Wellesley, MA, 2009.
[Tan] L. Tan. Branched coverings and cubic Newton maps. Fund. Math. 154(3) (1997), 207–260.
[TY] L. Tan and Y. Yin. Local connectivity of the Julia set for geometrically finite rational maps. Sci. China

Ser. A 39(1) (1996), 39–47, with an appendix prepublication in Rapport de Recherche UMPA, no. 121
(1994), Ecole Normale Superieure de Lyon.

[W] J. Wolff. Sur l’itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent
a cette région. C. R. Math. Acad. Sci. Paris 182 (1926), 42–43.

https://doi.org/10.1017/etds.2021.168 Published online by Cambridge University Press

https://arxiv.org/abs/1907.02870
https://arxiv.org/abs/1510.02771v1
https://doi.org/10.1017/etds.2021.168

	1 Introduction
	1.1 Organization of the paper
	1.2 Notation

	2 Preliminaries
	3 Counting number of poles
	3.1 Counting number of fixed points
	3.2 The inverse image of a Jordan curve
	3.3 Counting number of poles

	4 Invariant graph
	4.1 Channel graph
	4.2 Invariant graph
	4.3 Appendix: Shrinking lemma revisited

	5 Branner–Hubbard–Yoccoz puzzle
	5.1 Puzzles and ends
	5.2 Strategy of the proof

	6 Wandering ends are trivial
	6.1 Bounded degree property implies triviality of ends
	6.2 The case eEwr

	7 The renormalizable case
	8 Proof of the main theorem
	8.1 Proof of Theorem theorem11.1
	8.2 Concluding remarks

	Acknowledgements
	References

