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Abstract

The diamond is the complete graph on four vertices minus one edge; P, and C, denote the path and cycle
on n vertices, respectively. We prove that the chromatic number of a (Pg, C4, diamond)-free graph G is no
larger than the maximum of 3 and the clique number of G.
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1. Introduction

A graph is an ordered pair G = (V, E), where V is a set and E is a collection of 2-subsets
of V. Elements of V are referred to as vertices and elements of E are edges. All our
graphs are finite and have no loops or multiple edges. If there is a risk of confusion,
then the sets V and E will be denoted as V(G) and E(G), respectively. For classical
graph theory, we use the standard notation, following Bondy and Murty [1] and West
[19]. If X is a set of vertices in G, denote by G[X] the subgraph of G whose vertex set
is X and whose edge set consists of all edges of G which have both ends in X. For any
x € V(G), let N(x) denote the set of all neighbours of x in G and let dg(x) := |N(x)|.
The neighbourhood N(X) of a subset X C V(G) is the set of vertices in V(G)\X which
are adjacent to a vertex of X.

A cligue in a graph is a set of pairwise adjacent vertices and a stable set is
a set of pariwise nonadjacent vertices. A k-colouring of a graph G is a mapping
¢ :V(G) - {1,2,...,k} such that ¢(u) # ¢(v) whenever u and v are adjacent in G.
Equivalently, a k-colouring of G is a partition of V(G) into k stable sets. A graph is
k-colourable if it admits a k-colouring. The chromatic number of a graph G, denoted
by x(G), is the minimum number k for which G is k-colourable. The clique number of
G, denoted by w(G), is the size of the largest clique in G. Obviously, y(H) > w(H) for
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any induced subgraph H of G. However, the difference y(H) — w(H) may be arbitrarily
large as there are triangle-free graphs with arbitrarily large chromatic number (see
[15]). Furthermore, Erd8s [6] showed that for any positive integers k and [ there exists
a graph G with y(G) > k whose shortest cycle has length at least /.

The complement G of a graph G has the same vertex set as G, and distinct vertices
u,v are adjacent in G just when they are not adjacent in G. A hole of G is an induced
subgraph of G which is a cycle of length at least four, and a hole is said to be an
odd hole if it has odd length. An anti-hole of G is an induced subgraph of G whose
complement is a hole in G. Given a graph with large chromatic number, it is natural to
ask whether it must contain induced subgraphs with particular properties. A family ¥
of graphs is said to be y-bounded if there exists a function f such that y(H) < f(w(H))
for every graph H in ¥ . The function f is called a y-bounding function of 7. If f
is a linear function of w, then we say that # is linearly y-bounded. The notion of
x-bounded families was introduced by Gydrfas [10] in 1987. Since then, it has received
considerable attention for ¥ -free graphs. See [17, 18] for further details.

We say that a graph G contains a graph H if H is isomorphic to an induced subgraph
of G. A graph G is H-free if it does not contain H. For a family ¥ of graphs, G is 7 -free
if G is H-free for every H € ¥; when ¥ has two elements H; and H,, we simply write
G is (Hy, Hy)-free instead of {H, Hy}-free. If ¥ is a finite family of graphs, and if C
is the class of ¥ -free graphs which is y-bounded, then by a classical result of Erdds
[6], at least one member of ¥ is a forest (see also [10]). A graph G is perfect if y(H) =
w(H) for each induced subgraph H of G. A chordless cycle of length 2k + 1,k > 2,
satisfies 3 = y > w = 2, and its complement satisfies k + 1 = y > w = k. These graphs
are therefore imperfect. The strong perfect graph theorem [4] says that the class of
graphs without odd holes or odd anti-holes is linearly y-bounded and the y-bounding
function is the identity function f(x) = x. If we only forbid odd holes, then the resulting
class remains y-bounded, but the best known y-bounding function is not linear [17].
In recent years, there has been an ongoing project led by Scott and Seymour that aims
to determine the existence of y-bounding functions for classes of graphs without holes
of various lengths (see the recent survey [18]).

Let P,,C, and K, denote the path, cycle and complete graph on n vertices,
respectively. Gyarfas [ 10] showed that the class of P,-free graphs is y-bounded. Gravier
et al. [9] improved Gyérfas’s bound slightly by proving that every P;-free graph G
satisfies y(G) < (t —2)“©~! It is well known that every P,-free graph is perfect.
The preceding result implies that every Ps-free graph G satisfies y(G) < 39!, The
problem of determining whether the class of Ps-free graphs admits a polynomial
x-bounding function remains open, and it is remarked in [14] (without proof) that
the known y-bounding functions f for this class of graphs satisfy c(w?/logw) <
f(w) < 2%. So the recent focus is on obtaining y-bounding functions for some classes
of Ps-free graphs. Chudnovsky and Sivaraman [5] showed that every (Ps, Cs)-free
graph G satisfies y(G) < 2¢©~!  and that every (Ps,bull)-free graph G satisfies
x(G) < (“’((;)“). Schiermeyer [16] showed that every (Ps, H)-free graph G satisfies

x(G) < w(G)?, for some special graphs H. Char and Karthick [3] showed that every
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(Ps, 4-wheel)-free graph G satisfies y(G) < %w(G). Gaspers and Huang in [7] proved
that every (Pg, Cy4)-free graph G has y(G) < %w(G). This % bound was improved
recently by Karthick and Maffray [12] to y(G) < %w(G). Karthick and Maffray
[11] also showed that every (Ps, diamond)-free graph G satisfies y(G) < w(G) + 1,
where the diamond is the complete graph on four vertices minus one edge. For the
family of (Pg, diamond)-free graphs, Karthick and Mishra [13] showed that every
(Pg, diamond)-free graph G satisfies y(G) < 2w(G) + 5. In the same paper, they proved
that every (Pg, diamond, K4)-free graph is 6-colourable. In 2021, Cameron et al. [2]
improved the y-bounding function of (Pg, diamond)-free graphs to w(G) +3. In a
recent paper [8], Goedgebeur et al. proved that every (Pg,diamond)-free graph G
satisfies y(G) < max{6, w(G)}.

We investigate the chromatic number of (Pg, C4, diamond)-free graphs. We do this
by reducing the problem to imperfect (Pg, Cy4, diamond)-free graphs via the strong
perfect graph theorem, dividing the imperfect graphs into several cases and giving
a proper colouring for each case. More precisely, the result is stated in the following
theorem.

THEOREM 1.1. Let G be a (Pg, C4,diamond)-free graph. Then x(G) < max{3, w(G)}.

We end this section by setting up the notation that we will be using. Let X and Y be
any two subsets of V(G). We write [X, Y] to denote the set of edges that have one end
in X and other end in Y. We say that X is complete to Y or [X, Y] is complete if every
vertex in X is adjacent to every vertex in Y; and X is anti-complete to Y if [X, Y] = 0.
If X is a singleton, say {u}, we simply write u is complete (anti-complete) to Y instead
of writing {u} is complete (anti-complete) to Y.

2. (Pg, C4, diamond)-free graphs

One of the most celebrated theorems in graph theory is the strong perfect graph
theorem [4].

THEOREM 2.1. A graph is perfect if and only if it does not contain an odd hole or an
odd anti-hole as an induced subgraph.

Karthick and Maffray [12] proved the following lemma.
LEMMA 2.2. Let G be any (Pg, Cy)-free graph. Then y(G) < [%w(G)'I.

We first study the structure of imperfect (Pg, Cy4, diamond)-free graphs. Since a
Pe-free graph contains no hole of length at least 7, and a diamond-free graph contains
no anti-hole of length at least 7, by Theorem 2.1, we have the following result.

LEMMA 2.3. Every imperfect (Pg, C4, diamond)-free graph contains an induced Cs.

Let G = (V,E) be an imperfect (Pg, C4,diamond)-free graph that contains an
induced Cs. Denote the vertex set of this Cs by P := {uy, us, us, us, us} and its edge
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set by {ujuy, upus, usug, usus, usu }. Define the sets.
Ny :={ue VIG\P: Nu)NP #0} and N, :=V(G)\(N;UP).

It is straightforward to see that V(G) = P U N1 U N;.

From now on, every subscript is taken modulo 5. Since G is diamond-free and
Cs-free, we may assume that each vertex in N is either adjacent to exactly one vertex
in P or exactly two consecutive vertices in . That is, | can be partitioned into two
subsets

Aii={ue N\ :Nw)NP ={u;}} and B :={ue N :NwNP = {u;uy1}}

Let A:=J;_,A; and B:=J, Bi;x1 so that N(P)=AUB and V(G)=PUAU
B U N,.

We now claim that N, is empty. For otherwise, suppose that there is a vertex z € N,.
Then z has a neighbour x € A U B since G is connected. Without loss of generality, we
may assume that x is adjacent to u;, but adjacent to none of u;,,, #;+3 and u;4. Then
{z, x, u;, uizn, uir3, Uir4} induces a Pg. However, this is a contradiction and so V(G) =
PUAUB.

We next observe a few useful properties of the sets A and B before proceeding with
the proof of the theorem.

MI1. For any v € V(G), N(v) induces a Ps-free graph, so each G[A;] is the disjoint
union of complete graphs for all i € [5]. This follows directly from the fact that
G is diamond-free.

M2. The set A; is anti-complete to A;,; for all i € [5]. For if a; € A; and a; € A4
are adjacent, then {a;, ay, u;, u;4+1} induces a Cy and {ay, ay, Ui 1, Uir2, Uis3, Uiva}
induces a Pg, which is a contradiction.

M3. The set A; is complete to A;,, for all i € [5]. Forif a; € A; and a; € A;4; are not
adjacent, then {ay, ap, u;_», u;—1, u;, u;+2} induces a Pg, which is a contradiction.

M4. Each G[B;;.1] is a clique for all i € [5]. For if b1, b, € B;;41 are not adjacent,
then {b1, by, u;, u;1} induces a diamond, which is a contradiction.

M5. The set B = B;;+1 U Bjyp,3 for some i. It suffices to show that for each i
at least one of B;;i,B;_;; is empty. Suppose the contrary. Let b; € B,y
and b, € B;_y;. Then, either {by, b, u;, u;+1} induces a diamond if bb, € E or
(b1, by, u;_1, uis1, uis2, uir3} induces a Pg if by b, ¢ E, which is a contradiction.

M6. The set B;;y is anti-complete to A; UA;y; for all i € [5]. By symmetry, it
suffices to show that B; ;. is anti-complete to A;. If a € A; and b € B; ;| are
adjacent, then {a, b, u;, u;1} induces a diamond, which is a contradiction.

M7.  Either B;;11 =0 or A;i-; UA;» =0 for all i € [5]. To the contrary, assume
that a € A;» and b € B;;y1. If a and b are adjacent, then {a, b, u;.1, uis2}
induces a C4, which is a contradiction. If a and b are not adjacent, then
{a, b, u;, u;s, u;3, uiy4} induces a Pg, which is a contradiction. The case with
a € A;_) is symmetric.

MS8. If A; contains an edge, then A;» = A3 = Biy1 42 = Bipi—1 =0 for all i € [5].
Suppose that A; contains an edge a;a;,. If there is a vertex x in A;;» U A;43, then
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x is adjacent to a; and a; by M3. Then {x, a;, a», #;} induces a diamond, which
is a contradiction. Since A; # 0, it follows that B2 = Bi_2;-1 = 0 by M7.
M9. [IfA; # 0,theneach of Biyj 4 = Bi_s;—1 = 0 forall i € [5]. This follows directly
from M7.
MI10. The set B;;y; is anti-complete to Bj,; ;.3 for all i € [S]. For if b; € B;;;; and
b, € Bji3;43 are such that b; and b, are adjacent, then {by, by, u;,1, 42} induces
a Cy4, which is a contradiction.

3. Proof of Theorem 1.1

In this section, we show that every (Pg, C4, diamond)-free graph G is (w(G) + 1)-
colourable and G is w(G)-colourable if w > 3. The following lemma can be verified
routinely.

LEMMA 3.1 (Cameron et al. [2]). Let G be a graph that can be partitioned into two
cliques X and Y such that the edges between X and Y form a matching. If max{|X|, |Y|} <
k for some integer k > 2, then G is k-colourable.

To prove Theorem 1.1, we shall use induction on the number of vertices in G. The
proof follows the pretty idea presented in [2]. Two nonadjacent vertices x and y in a
graph G are comparable if N(x) € N(y) or N(y) € N(x). The major work lies in proving
the following auxiliary theorem.

THEOREM 3.2. Let G be a connected (Pg, Cy,diamond)-free graph without clique
cutsets and comparable vertices. Then x(G) < max{3, w(G)}.

PROOF. Let G = (V, E) be a graph satisfying the assumptions of the theorem. In what
follows, we let w denote the clique number of a graph under consideration. If w < 2,
then the theorem follows from Lemma 2.2. Therefore, we can assume that w > 3.
Aiming for a contradiction, we assume that G is imperfect and hence it contains
an induced Cs by Lemma 2.3, say P := {uy, up, us, us, us} (in order). Define the sets
P,A,B,A; and B, for each i € {1,2,3,4,5} as before. By M5, we may assume that
B = By3 U Bys. The idea is to colour U A U B, 3 U By 5 using exactly w colours. We
consider several cases. In each case, we give a desired colouring explicitly. In the
following, when we say that we colour a set, say X, with a certain colour a, we mean
that we colour each vertex in X with that colour a. We now proceed by considering the
following cases.

Case 1. A| contains an edge. By M8, A3 = Ay = By3 = Bss = 0. Since By3 = Bys = 0,
B is empty, that is, V(G) = P U A. Furthermore, A; is anti-complete to A, U A5 by M2,
and A, and As are complete to each other by M3. Now we can colour £ U A as follows.

(i) Aj contains an edge (so that A5 = () by M8).

e Colour P := uy, uy, usz, us, us with colours 1,2, 1,2, 3 in order.
* Colour each component of A; with colours in {2, 3, ..., w}.
* Colour each component of A, with colours in {1, 3,4, ..., w}.
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(i) A; is stable.

e Colour P := uy, uy, u3, us, us with colours 2, 1,2, 3, 1 in order.

* Colour each component of A; with colours in {1,3,4, ..., w}.

* If A5 contains an edge, then A, = () by M8 and we colour each component of A
with colours in {2, 3, ..., w}. Otherwise, colour As with colour 2 if As # 0 and
colour A, with colour 3 if A, # 0.

We note that this colouring is well defined. Since the components of A; and A, are
cliques of size at most w — 1, every vertex is coloured with some colour. We now show
that this is an w-colouring of £ U A. Observe first that each trivial component of A; is
coloured with colour 2. By M1, the colouring is proper on # U A. This proves that the
colouring is a proper colouring.

Case 2. A is stable but not empty. By M8, there are no edges in A3 and A4. By M9,
By3 = Bss =0, thatis, V(G) = P UA. If both A, and As are stable sets or both A, and
As are empty, then w = 2, which is a contradiction. If A, is stable but not empty, then
As contains no edges by M8, which is a contradiction to w > 3. Therefore, it follows
from M2 that the following gives an w-colouring of P U A.

(i) Aj contains an edge (so that Ay = A5 = () by M8).

e Colour P := uy, up, us, us, us with colours 2, 1,2, 1, 3 in order.
* Colour A; and Az with colours 1 and 3, respectively.
* Colour each component of A, with colours in {2, 3, ..., w}.

(i) A; is empty. (Note that A5 must contains an edge in this case since w > 3, and
hence A3 = 0 by M8.)

e Colour {uy, uy, u3, us, us} with colours 2, 1,2, 3, 1 in order.
* Colour A; and A4 with colour 1 and 2 (if A4 # 0), respectively.
* Colour each component of As with colours in {2, 3,. .., w}.

By M2 and M3, it is easily verified that the colouring is proper.
Case 3. A| is empty. In this case, we further consider the following two subcases.

Subcase 3.1. Ay contains an edge. By M8, Ay = As = (0. By M9, A3 # 0 and B4s # 0
cannot occur simultaneously. That is, either A is empty or By 5 is empty.

If A3 # 0, then Bss = 0 by M9. That is, V(G) = P UA; UA3z U B, 3. Consider the
following colouring of P U A; U A3 U By 3.

e Colour P := uy, uy, usz, ug, us with colours 1,2, 1,2, 3 in order.
* Colour each component of A, with colours in {1, 3,4, ..., w}.
¢ Colour each component of A3 with colours in {2, 3,..., w}.

¢ Colour vertices in B 3 with colours in {3,4, ..., w}.

By M4, |B, 3| < w — 2. An argument similar to that in Case 1 shows that the above
is a proper w-colouring of P U A, U A3 U By 3.
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Suppose now that Az is empty. That is, V(G) = P U A, U By3 U Bys. Since G is
diamond-free, the edges (if there are any) between Bss and each component of A,
form a matching. Consider the following colouring of P UA U B3 U By s.

* Colour P := uy, uy, us, us, us with colours 3, 1,2, 1,2 in order.

* Colour each component of A, with colours in {2,3,...,w}. By Lemma 3.1, there
exists an (w — 2)-colouring of B4 s with colours in {3, 4, . . ., w} by permuting colours
in A, (if necessary).

* By M10, itis easily verified that there exists an (w — 2)-colouring of B, 3 with colours
in{3,4,...,w}.

Since B3 and A, are anti-complete by M6, the above colouring gives a proper
w-colouring of P U A, U By3 U Bys.

Subcase 3.2. A, is stable but not empty. Suppose first that A3 contains an edge. By M8,
As = By5 = 0. By M8, A4 contains no edges since A, # 0.

If A4 is empty, one can easily verify that the following is a proper w-colouring of
PUAUB3UBys.

e Colour P := uy, us, us, us, us with colours 1,2, 1, 3, 2 in order.
* Colour A; with 1 and colour each component of A3 with colours in {2, 3, ..., w}.
* Colour vertices in B, 3 with colours in {3,4, ..., w}.

If A4 is stable but not empty, then B, 3 = 0 by M9. That is, V(G) = £ U A. One can
obtain a proper colouring of $ U A as follows.

e Colour P := uy, uy, us, us, us with colours 1,2, 1,3, 2 in order.
* Colour A; and A4 with colours 3 and 2, respectively, and colour each component of
As with colours in {2, 3, ..., w}.

Now suppose that A3 is stable but not empty. Then, by M9, By 5 = 0, and by M8,
both A4 and As are stable since A, # 0. So, each A; is stable for 2 <i < 5. We can
obtain a proper colouring of # U A U B as follows.

e Colour P := uy, uy, usz, ug, us with colours 1,2, 1,3, 2 in order.
* Colour A;,A3,A4 and As with colours 3, 3, 2 and 1, respectively, and colour each
component of B 3 with colours in {3,4, ..., w}.

Therefore, we may suppose that A3 = (. Then, by M8, both A4 and As are stable
since A, # 0 and, by M9, either A4 = 0 or B3 = 0. Now we consider the following
two colourings.

(i) A4=0.

e Colour P := uy, uy, uz, us, us with colours 3,2, 1,2, 1 in order.

* Colour A; and As with colours 1 and 2, respectively.

* By MIO, there exists an (w — 2)-colouring of B,3 U Bss with colours in
{3,4,...,w}
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(i) A4 # 0, that is, Bz,g =0.

e Colour P := uy, uz, u3, us, us with colours 3,2, 1,2, 1 in order.
* Colour A, A4 and A5 with colours 1, 3 and 2, respectively.
* By M4, there exists an (w — 2)-colouring of B, s with colours in {3,4, ..., w}.

By M4 and M10, one can easily verify that the above is a proper w-colouring of
PUAUBy3UBys.

Subcase 3.3. A, is empty. Suppose first that A3 contains an edge. By M8, As = By s = 0.
By M9, either A4 = 0 or B3 = (0. We consider the following two colourings.

1) As=0.
e Colour P := uy, uy, u3, us, us with colours 3,2, 1,2, 1 in order.
* Colour each component of A3 with colours in {2, 3, ..., w}.
* Colour vertices in B, 3 with colours in {3,4, ..., w}.

(i) Ay # 0, that is, By3 = 0.

e Colour P := uy, uy, u3, us, us with colours 2,3, 1,2, 1 in order.
* Colour each component of A3 with colours in {2, 3, ..., w}.
* Colour each component of A4 with colours in {1, 3,4, ..., w}.

One can easily verify that the above is a proper w-colouring of # UA U By 3 U Bys.
Now suppose that Aj is stable but not empty. Then, by M9, By 5 is empty and, by
MBS, As is stable. We consider the following two colourings.

(i) A4=0.

e Colour P := uy, uy, usz, ug, us with colours 3, 1,2, 1, 2 in order.
* Colour Az and As with colours 1 and 3, respectively.
* Colour vertices in B, 3 with colours in {3,4, ..., w}.

(i) A4 # 0, that is, By3 = 0.

e Colour P := uy, uy, usz, ug, us with colours 1, 3,2, 1, 2 in order.
* Colour A3 and A5 with colours 1 and 3, respectively, and colour each component
of A4 with colours in {2,3, ..., w}.

By M2 and M3, one can easily verify that the above is a proper w-colouring of
PUAUB3 U Bys.

Finally, we suppose that A3 is empty. That is, V(G) = P UA4 UAs U B3 U Bys5. By
M9, either A4 = 0 or B3 = 0. Since G is diamond-free, the edges (if there are any)
between B, 3 and each component of A5 form a matching. Consider the following two
colourings of P UA4 UAs U B3 U Bys.

() Ay =0.

e Colour P := uy, uy, us3, ug, us with colours 3,2, 1,2, 1 in order.
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* Colour each component of As with colours in {2, 3, ..., w}.

* By Lemma 3.1, there exists an (w — 2)-colouring of B3 with colours in
{3,4,...,w} by permuting colours in As (if necessary).

* Colour vertices in By s with colours in {3,4, ..., w}.

(ii) A4 # 0, thatis, Bo3 = 0.

e Colour P := uy, us, u3, us, us with colours 3, 1,2, 1, 2 in order.

* Colour each component of A4 with colours in {2, 3,. .., w}.
* Colour each component of As with colours in {1, 3,4, ..., w}.
* Colour B4 s with colours in {3,4, ..., w}.

Since B3 and A, are anti-complete, the above colouring gives a proper w-colouring
of PUA4 UAs UBy3 U Bys. This concludes the proof of Theorem 3.2. O

Now we can easily deduce Theorem 1.1.

PROOF OF THEOREM 1.1. If w <2, then the theorem follows from Lemma 2.2.
Therefore, we can assume that w > 3 and we prove the theorem by induction on
|[V]. We may assume that G is connected. For otherwise, the theorem holds by
applying the inductive hypothesis to each connected component of G. If G contains
a clique cutset S, that is, G[V — S] is the disjoint union of two subgraphs X; and X,
then y(G) = max{ xy(G[V(X;) U SD,x(G[V(Xy) U S])} directly from the inductive
hypothesis. If G contains two nonadjacent vertices x and y such that N(y) € N(x), then
X(G) = x(G[V - {y}]) and w(G) = w(G[V — {y}]), and the theorem holds by applying
the inductive hypothesis to G[V — {y}]. Therefore, we can assume that G is a connected
graph with no pair of comparable vertices and no clique cutsets. Thus, the theorem
follows directly from Theorem 3.2. O
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