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Abstract

The diamond is the complete graph on four vertices minus one edge; Pn and Cn denote the path and cycle
on n vertices, respectively. We prove that the chromatic number of a (P6, C4, diamond)-free graph G is no
larger than the maximum of 3 and the clique number of G.
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1. Introduction

A graph is an ordered pair G = (V , E), where V is a set and E is a collection of 2-subsets
of V. Elements of V are referred to as vertices and elements of E are edges. All our
graphs are finite and have no loops or multiple edges. If there is a risk of confusion,
then the sets V and E will be denoted as V(G) and E(G), respectively. For classical
graph theory, we use the standard notation, following Bondy and Murty [1] and West
[19]. If X is a set of vertices in G, denote by G[X] the subgraph of G whose vertex set
is X and whose edge set consists of all edges of G which have both ends in X. For any
x ∈ V(G), let N(x) denote the set of all neighbours of x in G and let dG(x) := |N(x)|.
The neighbourhood N(X) of a subset X ⊆ V(G) is the set of vertices in V(G)\X which
are adjacent to a vertex of X.

A clique in a graph is a set of pairwise adjacent vertices and a stable set is
a set of pariwise nonadjacent vertices. A k-colouring of a graph G is a mapping
ϕ : V(G)→ {1, 2, . . . , k} such that ϕ(u) � ϕ(v) whenever u and v are adjacent in G.
Equivalently, a k-colouring of G is a partition of V(G) into k stable sets. A graph is
k-colourable if it admits a k-colouring. The chromatic number of a graph G, denoted
by χ(G), is the minimum number k for which G is k-colourable. The clique number of
G, denoted by ω(G), is the size of the largest clique in G. Obviously, χ(H) ≥ ω(H) for
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any induced subgraph H of G. However, the difference χ(H) − ω(H) may be arbitrarily
large as there are triangle-free graphs with arbitrarily large chromatic number (see
[15]). Furthermore, Erdős [6] showed that for any positive integers k and l there exists
a graph G with χ(G) > k whose shortest cycle has length at least l.

The complement Ḡ of a graph G has the same vertex set as G, and distinct vertices
u, v are adjacent in Ḡ just when they are not adjacent in G. A hole of G is an induced
subgraph of G which is a cycle of length at least four, and a hole is said to be an
odd hole if it has odd length. An anti-hole of G is an induced subgraph of G whose
complement is a hole in Ḡ. Given a graph with large chromatic number, it is natural to
ask whether it must contain induced subgraphs with particular properties. A family F
of graphs is said to be χ-bounded if there exists a function f such that χ(H) ≤ f (ω(H))
for every graph H in F . The function f is called a χ-bounding function of F . If f
is a linear function of ω, then we say that F is linearly χ-bounded. The notion of
χ-bounded families was introduced by Gyárfás [10] in 1987. Since then, it has received
considerable attention for F -free graphs. See [17, 18] for further details.

We say that a graph G contains a graph H if H is isomorphic to an induced subgraph
of G. A graph G is H-free if it does not contain H. For a familyF of graphs, G isF -free
if G is H-free for every H ∈ F ; when F has two elements H1 and H2, we simply write
G is (H1, H2)-free instead of {H1, H2}-free. If F is a finite family of graphs, and if C
is the class of F -free graphs which is χ-bounded, then by a classical result of Erdős
[6], at least one member of F is a forest (see also [10]). A graph G is perfect if χ(H) =
ω(H) for each induced subgraph H of G. A chordless cycle of length 2k + 1, k ≥ 2,
satisfies 3 = χ > ω = 2, and its complement satisfies k + 1 = χ > ω = k. These graphs
are therefore imperfect. The strong perfect graph theorem [4] says that the class of
graphs without odd holes or odd anti-holes is linearly χ-bounded and the χ-bounding
function is the identity function f (x) = x. If we only forbid odd holes, then the resulting
class remains χ-bounded, but the best known χ-bounding function is not linear [17].
In recent years, there has been an ongoing project led by Scott and Seymour that aims
to determine the existence of χ-bounding functions for classes of graphs without holes
of various lengths (see the recent survey [18]).

Let Pn, Cn and Kn denote the path, cycle and complete graph on n vertices,
respectively. Gyárfás [10] showed that the class of Pt-free graphs is χ-bounded. Gravier
et al. [9] improved Gyárfás’s bound slightly by proving that every Pt-free graph G
satisfies χ(G) ≤ (t − 2)ω(G)−1. It is well known that every P4-free graph is perfect.
The preceding result implies that every P5-free graph G satisfies χ(G) ≤ 3ω(G)−1. The
problem of determining whether the class of P5-free graphs admits a polynomial
χ-bounding function remains open, and it is remarked in [14] (without proof) that
the known χ-bounding functions f for this class of graphs satisfy c(ω2/ logω) ≤
f (ω) ≤ 2ω. So the recent focus is on obtaining χ-bounding functions for some classes
of P5-free graphs. Chudnovsky and Sivaraman [5] showed that every (P5, C5)-free
graph G satisfies χ(G) ≤ 2ω(G)−1, and that every (P5, bull)-free graph G satisfies
χ(G) ≤

(
ω(G)+1

2

)
. Schiermeyer [16] showed that every (P5, H)-free graph G satisfies

χ(G) ≤ ω(G)2, for some special graphs H. Char and Karthick [3] showed that every

https://doi.org/10.1017/S0004972722001034 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001034


[3] Chromatic number of certain graphs 3

(P5, 4-wheel)-free graph G satisfies χ(G) ≤ 3
2ω(G). Gaspers and Huang in [7] proved

that every (P6, C4)-free graph G has χ(G) ≤ 3
2ω(G). This 3

2 bound was improved
recently by Karthick and Maffray [12] to χ(G) ≤ 5

4ω(G). Karthick and Maffray
[11] also showed that every (P5, diamond)-free graph G satisfies χ(G) ≤ ω(G) + 1,
where the diamond is the complete graph on four vertices minus one edge. For the
family of (P6, diamond)-free graphs, Karthick and Mishra [13] showed that every
(P6, diamond)-free graph G satisfies χ(G) ≤ 2ω(G) + 5. In the same paper, they proved
that every (P6, diamond, K4)-free graph is 6-colourable. In 2021, Cameron et al. [2]
improved the χ-bounding function of (P6, diamond)-free graphs to ω(G) + 3. In a
recent paper [8], Goedgebeur et al. proved that every (P6, diamond)-free graph G
satisfies χ(G) ≤ max{6,ω(G)}.

We investigate the chromatic number of (P6, C4, diamond)-free graphs. We do this
by reducing the problem to imperfect (P6, C4, diamond)-free graphs via the strong
perfect graph theorem, dividing the imperfect graphs into several cases and giving
a proper colouring for each case. More precisely, the result is stated in the following
theorem.

THEOREM 1.1. Let G be a (P6, C4, diamond)-free graph. Then χ(G) ≤ max{3,ω(G)}.

We end this section by setting up the notation that we will be using. Let X and Y be
any two subsets of V(G). We write [X, Y] to denote the set of edges that have one end
in X and other end in Y. We say that X is complete to Y or [X, Y] is complete if every
vertex in X is adjacent to every vertex in Y; and X is anti-complete to Y if [X, Y] = ∅.
If X is a singleton, say {u}, we simply write u is complete (anti-complete) to Y instead
of writing {u} is complete (anti-complete) to Y.

2. (P6, C4, diamond)-free graphs

One of the most celebrated theorems in graph theory is the strong perfect graph
theorem [4].

THEOREM 2.1. A graph is perfect if and only if it does not contain an odd hole or an
odd anti-hole as an induced subgraph.

Karthick and Maffray [12] proved the following lemma.

LEMMA 2.2. Let G be any (P6, C4)-free graph. Then χ(G) ≤ � 5
4ω(G)	.

We first study the structure of imperfect (P6, C4, diamond)-free graphs. Since a
P6-free graph contains no hole of length at least 7, and a diamond-free graph contains
no anti-hole of length at least 7, by Theorem 2.1, we have the following result.

LEMMA 2.3. Every imperfect (P6, C4, diamond)-free graph contains an induced C5.

Let G = (V , E) be an imperfect (P6, C4, diamond)-free graph that contains an
induced C5. Denote the vertex set of this C5 by P := {u1, u2, u3, u4, u5} and its edge
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set by {u1u2, u2u3, u3u4, u4u5, u5u1}. Define the sets.

N1 := {u ∈ V(G)\P : N(u) ∩ P � ∅} and N2 := V(G)\(N1 ∪ P).

It is straightforward to see that V(G) = P ∪N1 ∪ N2.
From now on, every subscript is taken modulo 5. Since G is diamond-free and

C4-free, we may assume that each vertex in N1 is either adjacent to exactly one vertex
in P or exactly two consecutive vertices in P. That is, N1 can be partitioned into two
subsets

Ai := {u ∈ N1 : N(u) ∩ P = {ui}} and Bi,i+1 := {u ∈ N1 : N(u) ∩ P = {ui, ui+1}}.

Let A :=
⋃5

i=1 Ai and B :=
⋃5

i=1 Bi,i+1 so that N(P) = A ∪ B and V(G) = P ∪ A ∪
B ∪ N2.

We now claim thatN2 is empty. For otherwise, suppose that there is a vertex z ∈ N2.
Then z has a neighbour x ∈ A ∪ B since G is connected. Without loss of generality, we
may assume that x is adjacent to ui, but adjacent to none of ui+2, ui+3 and ui+4. Then
{z, x, ui, ui+2, ui+3, ui+4} induces a P6. However, this is a contradiction and so V(G) =
P ∪ A ∪ B.

We next observe a few useful properties of the sets A and B before proceeding with
the proof of the theorem.

M1. For any v ∈ V(G), N(v) induces a P3-free graph, so each G[Ai] is the disjoint
union of complete graphs for all i ∈ [5]. This follows directly from the fact that
G is diamond-free.

M2. The set Ai is anti-complete to Ai+1 for all i ∈ [5]. For if a1 ∈ Ai and a2 ∈ Ai+1
are adjacent, then {a1, a2, ui, ui+1} induces a C4 and {a1, a2, ui+1, ui+2, ui+3, ui+4}
induces a P6, which is a contradiction.

M3. The set Ai is complete to Ai+2 for all i ∈ [5]. For if a1 ∈ Ai and a2 ∈ Ai+2 are not
adjacent, then {a1, a2, ui−2, ui−1, ui, ui+2} induces a P6, which is a contradiction.

M4. Each G[Bi,i+1] is a clique for all i ∈ [5]. For if b1, b2 ∈ Bi,i+1 are not adjacent,
then {b1, b2, ui, ui+1} induces a diamond, which is a contradiction.

M5. The set B = Bi,i+1 ∪ Bi+2,i+3 for some i. It suffices to show that for each i
at least one of Bi,i+1, Bi−1,i is empty. Suppose the contrary. Let b1 ∈ Bi,i+1
and b2 ∈ Bi−1,i. Then, either {b1, b2, ui, ui+1} induces a diamond if b1b2 ∈ E or
{b1, b2, ui−1, ui+1, ui+2, ui+3} induces a P6 if b1b2 � E, which is a contradiction.

M6. The set Bi,i+1 is anti-complete to Ai ∪ Ai+1 for all i ∈ [5]. By symmetry, it
suffices to show that Bi,i+1 is anti-complete to Ai. If a ∈ Ai and b ∈ Bi,i+1 are
adjacent, then {a, b, ui, ui+1} induces a diamond, which is a contradiction.

M7. Either Bi,i+1 = ∅ or Ai−1 ∪ Ai+2 = ∅ for all i ∈ [5]. To the contrary, assume
that a ∈ Ai+2 and b ∈ Bi,i+1. If a and b are adjacent, then {a, b, ui+1, ui+2}
induces a C4, which is a contradiction. If a and b are not adjacent, then
{a, b, ui, ui+2, ui+3, ui+4} induces a P6, which is a contradiction. The case with
a ∈ Ai−1 is symmetric.

M8. If Ai contains an edge, then Ai+2 = Ai+3 = Bi+1,i+2 = Bi−2,i−1 = ∅ for all i ∈ [5].
Suppose that Ai contains an edge a1a2. If there is a vertex x in Ai+2 ∪ Ai+3, then
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x is adjacent to a1 and a2 by M3. Then {x, a1, a2, ui} induces a diamond, which
is a contradiction. Since Ai � ∅, it follows that Bi+1,i+2 = Bi−2,i−1 = ∅ by M7.

M9. If Ai � ∅, then each of Bi+1,i+2 = Bi−2,i−1 = ∅ for all i ∈ [5]. This follows directly
from M7.

M10. The set Bi,i+1 is anti-complete to Bi+2,i+3 for all i ∈ [5]. For if b1 ∈ Bi,i+1 and
b2 ∈ Bi+2,i+3 are such that b1 and b2 are adjacent, then {b1, b2, ui+1, ui+2} induces
a C4, which is a contradiction.

3. Proof of Theorem 1.1

In this section, we show that every (P6, C4, diamond)-free graph G is (ω(G) + 1)-
colourable and G is ω(G)-colourable if ω ≥ 3. The following lemma can be verified
routinely.

LEMMA 3.1 (Cameron et al. [2]). Let G be a graph that can be partitioned into two
cliques X and Y such that the edges between X and Y form a matching. If max{|X|, |Y |} ≤
k for some integer k ≥ 2, then G is k-colourable.

To prove Theorem 1.1, we shall use induction on the number of vertices in G. The
proof follows the pretty idea presented in [2]. Two nonadjacent vertices x and y in a
graph G are comparable if N(x) ⊆ N(y) or N(y) ⊆ N(x). The major work lies in proving
the following auxiliary theorem.

THEOREM 3.2. Let G be a connected (P6, C4, diamond)-free graph without clique
cutsets and comparable vertices. Then χ(G) ≤ max{3,ω(G)}.

PROOF. Let G = (V , E) be a graph satisfying the assumptions of the theorem. In what
follows, we let ω denote the clique number of a graph under consideration. If ω ≤ 2,
then the theorem follows from Lemma 2.2. Therefore, we can assume that ω ≥ 3.
Aiming for a contradiction, we assume that G is imperfect and hence it contains
an induced C5 by Lemma 2.3, say P := {u1, u2, u3, u4, u5} (in order). Define the sets
P, A, B, Ai and Bi,i+1 for each i ∈ {1, 2, 3, 4, 5} as before. By M5, we may assume that
B = B2,3 ∪ B4,5. The idea is to colour P ∪ A ∪ B2,3 ∪ B4,5 using exactly ω colours. We
consider several cases. In each case, we give a desired colouring explicitly. In the
following, when we say that we colour a set, say X, with a certain colour a, we mean
that we colour each vertex in X with that colour a. We now proceed by considering the
following cases.

Case 1. A1 contains an edge. By M8, A3 = A4 = B2,3 = B4,5 = ∅. Since B2,3 = B4,5 = ∅,
B is empty, that is, V(G) = P ∪ A. Furthermore, A1 is anti-complete to A2 ∪ A5 by M2,
and A2 and A5 are complete to each other by M3. Now we can colour P ∪ A as follows.

(i) A2 contains an edge (so that A5 = ∅ by M8).

• Colour P := u1, u2, u3, u4, u5 with colours 1, 2, 1, 2, 3 in order.
• Colour each component of A1 with colours in {2, 3, . . . ,ω}.
• Colour each component of A2 with colours in {1, 3, 4, . . . ,ω}.
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(ii) A2 is stable.

• Colour P := u1, u2, u3, u4, u5 with colours 2, 1, 2, 3, 1 in order.
• Colour each component of A1 with colours in {1, 3, 4, . . . ,ω}.
• If A5 contains an edge, then A2 = ∅ by M8 and we colour each component of A5

with colours in {2, 3, . . . ,ω}. Otherwise, colour A5 with colour 2 if A5 � ∅ and
colour A2 with colour 3 if A2 � ∅.

We note that this colouring is well defined. Since the components of A1 and A2 are
cliques of size at most ω − 1, every vertex is coloured with some colour. We now show
that this is an ω-colouring of P ∪ A. Observe first that each trivial component of A1 is
coloured with colour 2. By M1, the colouring is proper on P ∪ A. This proves that the
colouring is a proper colouring.

Case 2. A1 is stable but not empty. By M8, there are no edges in A3 and A4. By M9,
B2,3 = B4,5 = ∅, that is, V(G) = P ∪ A. If both A2 and A5 are stable sets or both A2 and
A5 are empty, then ω = 2, which is a contradiction. If A2 is stable but not empty, then
A5 contains no edges by M8, which is a contradiction to ω ≥ 3. Therefore, it follows
from M2 that the following gives an ω-colouring of P ∪ A.

(i) A2 contains an edge (so that A4 = A5 = ∅ by M8).

• Colour P := u1, u2, u3, u4, u5 with colours 2, 1, 2, 1, 3 in order.
• Colour A1 and A3 with colours 1 and 3, respectively.
• Colour each component of A2 with colours in {2, 3, . . . ,ω}.

(ii) A2 is empty. (Note that A5 must contains an edge in this case since ω ≥ 3, and
hence A3 = ∅ by M8.)

• Colour {u1, u2, u3, u4, u5} with colours 2, 1, 2, 3, 1 in order.
• Colour A1 and A4 with colour 1 and 2 (if A4 � ∅), respectively.
• Colour each component of A5 with colours in {2, 3, . . . ,ω}.

By M2 and M3, it is easily verified that the colouring is proper.

Case 3. A1 is empty. In this case, we further consider the following two subcases.

Subcase 3.1. A2 contains an edge. By M8, A4 = A5 = ∅. By M9, A3 � ∅ and B4,5 � ∅
cannot occur simultaneously. That is, either A3 is empty or B4,5 is empty.

If A3 � ∅, then B4,5 = ∅ by M9. That is, V(G) = P ∪ A2 ∪ A3 ∪ B2,3. Consider the
following colouring of P ∪ A2 ∪ A3 ∪ B2,3.

• Colour P := u1, u2, u3, u4, u5 with colours 1, 2, 1, 2, 3 in order.
• Colour each component of A2 with colours in {1, 3, 4, . . . ,ω}.
• Colour each component of A3 with colours in {2, 3, . . . ,ω}.
• Colour vertices in B2,3 with colours in {3, 4, . . . ,ω}.

By M4, |B2,3| ≤ ω − 2. An argument similar to that in Case 1 shows that the above
is a proper ω-colouring of P ∪ A2 ∪ A3 ∪ B2,3.
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Suppose now that A3 is empty. That is, V(G) = P ∪ A2 ∪ B2,3 ∪ B4,5. Since G is
diamond-free, the edges (if there are any) between B4,5 and each component of A2
form a matching. Consider the following colouring of P ∪ A ∪ B2,3 ∪ B4,5.

• Colour P := u1, u2, u3, u4, u5 with colours 3, 1, 2, 1, 2 in order.
• Colour each component of A2 with colours in {2, 3, . . . ,ω}. By Lemma 3.1, there

exists an (ω − 2)-colouring of B4,5 with colours in {3, 4, . . . ,ω} by permuting colours
in A2 (if necessary).

• By M10, it is easily verified that there exists an (ω − 2)-colouring of B2,3 with colours
in {3, 4, . . . ,ω}.

Since B2,3 and A2 are anti-complete by M6, the above colouring gives a proper
ω-colouring of P ∪ A2 ∪ B2,3 ∪ B4,5.

Subcase 3.2. A2 is stable but not empty. Suppose first that A3 contains an edge. By M8,
A5 = B4,5 = ∅. By M8, A4 contains no edges since A2 � ∅.

If A4 is empty, one can easily verify that the following is a proper ω-colouring of
P ∪ A ∪ B2,3 ∪ B4,5.

• Colour P := u1, u2, u3, u4, u5 with colours 1, 2, 1, 3, 2 in order.
• Colour A2 with 1 and colour each component of A3 with colours in {2, 3, . . . ,ω}.
• Colour vertices in B2,3 with colours in {3, 4, . . . ,ω}.

If A4 is stable but not empty, then B2,3 = ∅ by M9. That is, V(G) = P ∪ A. One can
obtain a proper colouring of P ∪ A as follows.

• Colour P := u1, u2, u3, u4, u5 with colours 1, 2, 1, 3, 2 in order.
• Colour A2 and A4 with colours 3 and 2, respectively, and colour each component of

A3 with colours in {2, 3, . . . ,ω}.

Now suppose that A3 is stable but not empty. Then, by M9, B4,5 = ∅, and by M8,
both A4 and A5 are stable since A2 � ∅. So, each Ai is stable for 2 ≤ i ≤ 5. We can
obtain a proper colouring of P ∪ A ∪ B as follows.

• Colour P := u1, u2, u3, u4, u5 with colours 1, 2, 1, 3, 2 in order.
• Colour A2, A3, A4 and A5 with colours 3, 3, 2 and 1, respectively, and colour each

component of B2,3 with colours in {3, 4, . . . ,ω}.

Therefore, we may suppose that A3 = ∅. Then, by M8, both A4 and A5 are stable
since A2 � ∅ and, by M9, either A4 = ∅ or B2,3 = ∅. Now we consider the following
two colourings.

(i) A4 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 3, 2, 1, 2, 1 in order.
• Colour A2 and A5 with colours 1 and 2, respectively.
• By M10, there exists an (ω − 2)-colouring of B2,3 ∪ B4,5 with colours in
{3, 4, . . . ,ω}.
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(ii) A4 � ∅, that is, B2,3 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 3, 2, 1, 2, 1 in order.
• Colour A2, A4 and A5 with colours 1, 3 and 2, respectively.
• By M4, there exists an (ω − 2)-colouring of B4,5 with colours in {3, 4, . . . ,ω}.

By M4 and M10, one can easily verify that the above is a proper ω-colouring of
P ∪ A ∪ B2,3 ∪ B4,5.

Subcase 3.3. A2 is empty. Suppose first that A3 contains an edge. By M8, A5 = B4,5 = ∅.
By M9, either A4 = ∅ or B2,3 = ∅. We consider the following two colourings.

(i) A4 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 3, 2, 1, 2, 1 in order.
• Colour each component of A3 with colours in {2, 3, . . . ,ω}.
• Colour vertices in B2,3 with colours in {3, 4, . . . ,ω}.

(ii) A4 � ∅, that is, B2,3 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 2, 3, 1, 2, 1 in order.
• Colour each component of A3 with colours in {2, 3, . . . ,ω}.
• Colour each component of A4 with colours in {1, 3, 4, . . . ,ω}.

One can easily verify that the above is a proper ω-colouring of P ∪ A ∪ B2,3 ∪ B4,5.
Now suppose that A3 is stable but not empty. Then, by M9, B4,5 is empty and, by

M8, A5 is stable. We consider the following two colourings.

(i) A4 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 3, 1, 2, 1, 2 in order.
• Colour A3 and A5 with colours 1 and 3, respectively.
• Colour vertices in B2,3 with colours in {3, 4, . . . ,ω}.

(ii) A4 � ∅, that is, B2,3 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 1, 3, 2, 1, 2 in order.
• Colour A3 and A5 with colours 1 and 3, respectively, and colour each component

of A4 with colours in {2, 3, . . . ,ω}.

By M2 and M3, one can easily verify that the above is a proper ω-colouring of
P ∪ A ∪ B2,3 ∪ B4,5.

Finally, we suppose that A3 is empty. That is, V(G) = P ∪ A4 ∪ A5 ∪ B2,3 ∪ B4,5. By
M9, either A4 = ∅ or B2,3 = ∅. Since G is diamond-free, the edges (if there are any)
between B2,3 and each component of A5 form a matching. Consider the following two
colourings of P ∪ A4 ∪ A5 ∪ B2,3 ∪ B4,5.

(i) A4 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 3, 2, 1, 2, 1 in order.
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• Colour each component of A5 with colours in {2, 3, . . . ,ω}.
• By Lemma 3.1, there exists an (ω − 2)-colouring of B2,3 with colours in
{3, 4, . . . ,ω} by permuting colours in A5 (if necessary).

• Colour vertices in B4,5 with colours in {3, 4, . . . ,ω}.

(ii) A4 � ∅, that is, B2,3 = ∅.

• Colour P := u1, u2, u3, u4, u5 with colours 3, 1, 2, 1, 2 in order.
• Colour each component of A4 with colours in {2, 3, . . . ,ω}.
• Colour each component of A5 with colours in {1, 3, 4, . . . ,ω}.
• Colour B4,5 with colours in {3, 4, . . . ,ω}.

Since B2,3 and A2 are anti-complete, the above colouring gives a proper ω-colouring
of P ∪ A4 ∪ A5 ∪ B2,3 ∪ B4,5. This concludes the proof of Theorem 3.2. �

Now we can easily deduce Theorem 1.1.

PROOF OF THEOREM 1.1. If ω ≤ 2, then the theorem follows from Lemma 2.2.
Therefore, we can assume that ω ≥ 3 and we prove the theorem by induction on
|V |. We may assume that G is connected. For otherwise, the theorem holds by
applying the inductive hypothesis to each connected component of G. If G contains
a clique cutset S, that is, G[V − S] is the disjoint union of two subgraphs X1 and X2,
then χ(G) = max{ χ(G[V(X1) ∪ S]), χ(G[V(X2) ∪ S])} directly from the inductive
hypothesis. If G contains two nonadjacent vertices x and y such that N(y) ⊆ N(x), then
χ(G) = χ(G[V − {y}]) and ω(G) = ω(G[V − {y}]), and the theorem holds by applying
the inductive hypothesis to G[V − {y}]. Therefore, we can assume that G is a connected
graph with no pair of comparable vertices and no clique cutsets. Thus, the theorem
follows directly from Theorem 3.2. �
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