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Abstract
Let A⊆ {0, 1}n be a set of size 2n−1, and let φ : {0, 1}n−1 →A be a bijection. We define the average stretch
of φ as

avgStretch(φ)=E[dist(φ(x), φ(x′))],

where the expectation is taken over uniformly random x, x′ ∈ {0, 1}n−1 that differ in exactly one coordinate.
In this paper, we continue the line of research studying mappings on the discrete hypercube with small
average stretch. We prove the following results.

• For any set A⊆ {0, 1}n of density 1/2 there exists a bijection φA : {0, 1}n−1 →A such that
avgStretch(φA)=O

(√
n
)
.

• For n= 3k let Arec-maj = {x ∈ {0, 1}n : rec-maj(x)= 1}, where rec-maj : {0, 1}n → {0, 1} is the func-
tion recursive majority of 3’s. There exists a bijection φrec-maj : {0, 1}n−1 →Arec-maj such that
avgStretch(φrec-maj)=O(1).

• Let Atribes = {x ∈ {0, 1}n : tribes(x)= 1}. There exists a bijection φtribes : {0, 1}n−1 →Atribes such that
avgStretch(φtribes)=O(log (n)).

These results answer the questions raised by Benjamini, Cohen, and Shinkar (Isr. J. Math 2016).
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1. Introduction
In this paper, we continue the line of research from [2, 15, 9] studying geometric similarities
between different subsets of the hypercube Hn = {0, 1}n. Given a set A⊆Hn of size |A| = 2n−1

and a bijection φ :Hn−1 →A, we define the average stretch of φ as

avgStretch(φ)=Ex∼x′∈Hn−1

[
dist

(
φ(x), φ

(
x′))] ,

where dist(x, y) is defined as the number of coordinates i ∈ [n] such that xi 	= yi, and the
expectation is taken over a uniformly random x, x′ ∈Hn−1 that differ in exactly one coordinate.1

The origin of this notion is motivated by the study of the complexity of distributions [5, 17, 12].
In this line of research, given a distribution D on Hn the goal is to find a mapping h :Hm →Hn

1Note that any C-Lipschitz function φ :Hn−1 →A satisfies avgStretch(φ)≤ C. That is, the notion of average stretch is a
relaxation of the Lipschitz property.
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such that if Um is the uniform distribution over Hm, then h(Um) is (close to) the distribution D,
and each output bit hi of the function h is computable efficiently (e.g., computable in AC0, i.e., by
polynomial size circuits of constant depth).

Motivated by the goal of proving lower bounds for sampling from the uniform distribution
on some set A⊆Hn, Lovett and Viola [12] suggested the restricted problem of proving that no
bijection from Hn−1 to A can be computed in AC0. Toward this goal they noted that it suffices
to prove that any such bijection requires large average stretch. Indeed, by the structural results
of [7, 4, 11] it is known that any such mapping φ that is computable by a polynomial size circuit
of depth d has avgStretch(φ)< log (n)O(d), and hence proving that any bijection requires super-
polylogarithmic average stretch implies that it cannot be computed inAC0. Proving a lower bound
for sampling using this approach remains an open problem.

Studying this problem, [2] have shown that if n is odd, and Amaj ⊆Hn is the hamming ball
of density 1/2, that is Amaj = {x ∈Hn :

∑
i xi > n/2}, then there is a O(1)-bi-Lipschitz mapping

fromHn−1 to Amaj, thus suggesting that proving a lower bound for a bijection fromHn−1 to Amaj
requires new ideas beyond the sensitivity-based structural results of [7, 4, 11] mentioned above.
In [15] it has been shown that if a subset Arand of density 1/2 is chosen uniformly at random,
then with high probability there is a bijection φ :Hn−1 →Arand with avgStretch(φ)=O(1). This
result has recently been improved by Johnston and Scott [9], who showed that for a random set
Arand ⊆Hn of density 1/2 there exists a O(1)-Lipschitz bijection from Hn−1 to Arand with high
probability.

The following problem was posed in [2], and repeated in [15, 9].

Problem 1.1. Exhibit a subset A⊆Hn of density 1/2 such that any bijection φ :Hn−1 →A has
avgStretch(φ)=ω(1), or prove that no such subset exists.2

Remark. Note that it is easy to construct a set of density 1/2 such that any bijection φ :Hn−1 →A
must have a worst case stretch at least n/2. For example, for odd n consider the set A= {y ∈
Hn : n/2<

∑
i yi < n} ∪ {0n}. Then any bijection φ :Hn−1 →A must map some point x ∈Hn−1

to 0n, while all neighbours x′ of x are mapped to some φ(x′) with weight at least n/2. Hence, the
worst case stretch of φ is at least n/2. In contrast, Problem 1.1 does not seem to have a non-trivial
solution.

To rephrase Problem 1.1, we are interested in determining a tight upper bound on the
avgStretch that holds uniformly for all sets A⊆Hn of density 1/2. Note that since the diame-
ter of Hn is n, for any set A⊆Hn of density 1/2 and any bijection φ :Hn−1 →A it holds that
avgStretch(φ)≤ n. It is natural to ask how tight this bound is, that is, whether there existsA⊆Hn
of density 1/2 such that any bijection φ :Hn−1 →A requires linear average stretch.

It is consistent with our current knowledge (though hard to believe) that for any setA of density
1/2 there is a mapping φ :Hn−1 →A with avgStretch(φ)≤ 2. The strongest lower bound we are
aware of is for the set A⊕ = {

x ∈Hn :
∑

i xi ≡ 0 (mod 2)
}
. Note that the distance between any

two points in A⊕ is at least 2, and hence avgStretch(φ)≥ 2 for any mapping φ :Hn−1 →A⊕.
Proving a lower bound strictly greater than 2 for any set A is an open problem, and prior to this
work we are not aware of any sublinear upper bounds that apply uniformly to all sets.

Most of the research on metric embedding, we are aware of, focuses on worst case stretch.
For a survey on metric embeddings of finite spaces see [10]. There has been a lot of research on
the question of embedding into the Boolean cube. For example, see [1, 8] for work on embeddings
between random subsets of the Boolean cube, and [6] for isometric embeddings of arbitrary graphs
into the Boolean cube.

2Throughout the paper, the density of a set A⊆Hn is defined as μn(A)= |A|
2n .
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1.1. A uniform upper bound on the average stretch
We prove a non-trivial uniform upper bound on the average stretch of a mapping φ :Hn−1 →A
that applies to all sets A⊆Hn of density 1/2.

Theorem 1.2. For any set A⊆Hn of density μn(A)= 1/2, there exists a bijection φ :Hn−1 →A
such that avgStretch(φ)=O

(√
n
)
.

Toward this goal we prove a stronger result bounding the average transportation distance
between two arbitrary sets of density 1/2. Specifically, we prove the following theorem.

Theorem 1.3. For any two sets A, B⊆Hn of density μn(A)=μn(B)= 1/2, there exists a bijection
φ :A→ B such that E [dist (x, φ(x))]≤ √

2n.

Note that Theorem 1.2 follows immediately from Theorem 1.3 by the following simple
argument.

Proposition 1.4. Fix a bijection φ :Hn−1 →A. Then avgStretch(φ)≤ 2Ex∈Hn−1 [dist
(x, φ(x))]+ 1.

Proof. Using the triangle inequality we have

avgStretch(φ) = Ex∈Hn−1
i∈[n−1]

[dist(φ(x), φ(x+ ei))]

≤ E[dist(x, φ(x))+ dist(x, x+ ei)+ dist(x+ ei, φ(x+ ei))]
= E[dist(x, φ(x))]+ 1+E[dist(x+ ei, φ(x+ ei))]
= 2E[dist(x, φ(x))]+ 1,

as required. �

1.2. Bounds on the average stretch for specific sets
Next, we study two specific subsets ofHn defined by Boolean functions commonly studied in the
field “Analysis of Boolean functions” [13]. Specifically, we study two monotone noise-sensitive
functions: the recursive majority of 3’s, and the tribes function.

It was suggested in [2] that the set of ones of these functions Af = f−1(1) may be such that any
mapping φ :Hn−1 →Af requires large avgStretch. We show that for the recursive majority func-
tion there is a mapping φrec-maj :Hn−1 → rec-maj−1(1) with avgStretch(φrec-maj)=O(1). For
the tribes function we show a mapping φtribes :Hn−1 → tribes−1(1) with avgStretch (φtribes)=
O(log (n)). Below we formally define the functions, and discuss our results.

1.2.1. Recursive majority of 3’s
The recursive majority of 3’s function is defined as follows.

Definition 1.5. Let k ∈N be a positive integer. Define the function recursive majority of 3’s
rec-majk :H3k → {0, 1} as follows.

• For k= 1 the function rec-maj1 is the majority function on the 3 input bits.
• For k> 1 the function rec-majk :H3k → {0, 1} is defined recursively as follows. For each
x ∈H3k write x= x(1) ◦ x(2) ◦ x(3), where each x(r) ∈H3k−1 for each r ∈ [3]. Then,
rec-majk(x)=maj

(
rec-majk−1

(
x(1)

)
, rec-majk−1

(
x(2)

)
, rec-majk−1

(
x(3)

))
.

Note that rec-majk(x)= 1− rec-majk(1− x) for all x ∈Hn, and hence the density of the
set Arec-majk = {

x ∈Hn : rec-majk(x)= 1
}
is μn

(
Arec-majk

) = 1/2. We prove the following result
regarding the set Arec-majk .

https://doi.org/10.1017/S0963548322000281 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548322000281


Combinatorics, Probability and Computing 337

Theorem 1.6. Let k be a positive integer, let n= 3k, and let Arec-majk = {
x ∈Hn : rec-majk(x)= 1

}
.

There exists a mapping φrec-majk :Hn−1 →Arec-majk such that avgStretch
(
φrec-majk

) ≤ 20.

1.2.2. The tribes function
The tribes function is defined as follows.

Definition 1.7. Let s,w ∈N be two positive integers, and let n= s ·w. The function tribes :Hn →
{0, 1} is defined as a DNF consisting of s disjoint clauses of width w.

tribes
(
x1, x2, . . . , xw; . . . ; x(s−1)w+1 . . . xsw

) =
s∨

i=1

(
x(i−1)w+1 ∧ x(i−1)w+2 ∧ · · · ∧ xiw

)
.

That is, the function tribes partitions n= sw inputs into s disjoint ‘tribes’ each of size w, and
returns 1 if and only if at least one of the tribes ‘votes’ 1 unanimously.

It is clear that Px∈Hn[tribes(x)= 1]= 1− (1− 2−w)s. The interesting settings of parameters
w and s are such that the function is close to balanced, that is, this probability is close to 1/2.
Given w ∈N, let s= sw = ln (2)2w ±�(1) be the largest integer such that 1− (1− 2−w)s ≤ 1/2.
For such choice of the parameters we have Px∈Hn[tribes(x)= 1]= 1

2 −O
(
log (n)

n

)
(see, e.g., [[13],

Section 4.2]).
Consider the set Atribes = {x ∈Hn : tribes(x)= 1}. Since the density of Atribes is not necessarily

equal to 1/2, we cannot talk about a bijection from Hn−1 to Atribes. In order to overcome this
technical issue, let A∗

tribes be an arbitrary superset of Atribes of density 1/2. We prove that there
is a mapping φtribes from Hn−1 to A∗

tribes with average stretch avgStretch(φtribes)=O(log (n)).
In fact, we prove a stronger result, namely that the average transportation distance of φtribes is
O(log (n)).

Theorem 1.8. Let w be a positive integer, and let s be the largest integer such that 1− (1− 2−w)s ≤
1/2. For n= s ·w let tribes :Hn → {0, 1} be defined as a DNF consisting of s disjoint clauses of
width w. Let Atribes = {x ∈Hn : tribes(x)= 1}, and let A∗

tribes ⊆Hn be an arbitrary superset of
Atribes of density μn

(
A∗
tribes

) = 1/2. Then, there exists a bijection φtribes :Hn−1 →A∗
tribes such that

E[dist(x, φtribes(x))]=O(log (n)). In particular, avgStretch(φtribes)=O(log (n)).

1.3. Roadmap
The rest of the paper is organized as follows. We prove Theorem 1.3 in section 2. In section 3, we
prove Theorem 1.6, and in section 4, we prove Theorem 1.8.

2. Proof of Theorem 1.3
We provide two different proofs of Theorem 1.3. The first proof, in subsection 2.1 shows a slightly
weaker bound of O

(√
n ln (n)

)
on the average stretch using the Gale-Shapley result on the stable

marriage problem. The idea of using the stable marriage problem was suggested in [2], and we
implement this approach. Then, in subsection 2.2, we show the bound of O

(√
n
)
by relating the

average stretch of a mapping between two sets to known estimates on theWasserstein distance on
the hypercube.

2.1. Upper bound on the average transportation distance using stable marriage
Recall the Gale-Shapley theorem on the stable marriage problem. In the stable marriage problem
we are given two sets of elements A and B each of size N. For each element a ∈A (resp. b ∈ B) we
have a ranking of the elements of B (resp. A) given as an bijection rka :A→ [N]

(
rkb : B→ [N]

)
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representing the preferences of each a (resp. b). A matching (or a bijection) φ :A→ B is said to be
unstable if there are a, a′ ∈A, and b, b′ ∈ B such that φ(a)= b′, φ(a′)= b, but rka(b)< rka(b′), and
rkb(a)< rkb(a′); that is, both a and bwould prefer to bemapped to each other over their mappings
given by φ. We say that a matching φ :A→ B is stable otherwise.

Theorem 2.1. (Gale-Shapley theorem) For any two sets A and B of equal size and any choice of
rankings for each a ∈A and b ∈ B there exists a stable matching m :A→ B.

For the proof of Theorem 1.3 the sets A and B are subsets of Hn of density 1/2. We define the
preferences between points based on the distances between them inHn. That is, for each a ∈A we
have rka(b)< rka(b′) if and only if dist(a, b)< dist(a, b′) with ties broken arbitrarily. Similarly, for
each b ∈ Bwe have rkb(a)< rkb(a′) if and only if dist(a, b)< dist(a′, b) with ties broken arbitrarily.

Let φ :A→ B be a bijection.We show that ifEx∈A[dist(x, φ(x))]> 3k for k= ⌈√
n ln (n)

⌉
, then

φ is not a stable matching. Consider the set

F := {x ∈A | dist(x, φ(x))≥ k}.
Note that since the diameter ofHn is n, andEx∈A[dist(x, φ(x))]> 3k, it follows thatμn(F)> k

n .
Indeed, we have 3k<Ex∈A[dist(x, φ(x))]≤ n · μn(F)

μn(A) + k ·
(
1− μn(F)

μn(A)

)
≤ n · μn(F)

μn(A) + k, and thus

μn(F)> 2k
n ·μn(A). Next, we use Talagrand’s concentration inequality.

Theorem 2.2. ([[16], Proposition 2.1.1]) Let k≤ n be two positive integers, and let F ⊆Hn. Let
F≥k = {

x ∈Hn : dist(x, y)≥ k ∀y ∈ F
}
be the set of all x ∈Hn whose distance from F is at least k.

Then μn
(
F≥k

) ≤ e−k2/n/μn(F).

By Theorem 2.2 we haveμn
(
F≥k

) ≤ e−k2/n/μn(F), and hence, for k= ⌈√
n ln (n)

⌉
it holds that

μn
(
F≥k

) ≤ e− ln (n)/μn(F)≤ (1/n)/(k/n)= 1/k.

In particular, since μn(φ(F))=μn(F)> k/n> 1/k≥μn
(
F≥k

)
, there is some b ∈ φ(F) that

does not belong to F≥k. That is, there is some a ∈ F and b ∈ φ(F) such that dist(a, b)< k. On
the other hand, for a′ = φ−1(b), by the definition of F we have dist(a, φ(a))≥ k and dist(a′, b=
φ(a′))≥ k, and hence φ is not stable, as a and b prefer to be mapped to each other over their
current matching. Therefore, in a stable matching Ex∈A[dist(x, φ(x))]≤ 3

⌈√
n ln (n)

⌉
, and by the

Gale-Shapley theorem such a matching does, indeed, exist.

2.2. Proof of Theorem 1.3 using transportation theory
Next we prove Theorem 1.3, by relating our problem to a known estimate on the Wasserstein
distance between twomeasures on the hypercube. Recall that the �1-Wasserstein distance between
two measures μ and ν onHn is defined as

W1(μ, ν)= inf
q

∑
x,y

dist(x, y)q(x, y),

where the infimum is taken over all couplings q of μ and ν, that is,
∑

y′ q(x, y′)=μ(x) and∑
x′ q(x′, y)= ν(y) for all x, y ∈Hn. That is, we consider an optimal coupling q of μ and ν mini-

mizingE(x,y)∼q[dist(x, y)], the expected distance between x and y, where x is distributed according
to μ and y is distributed according to ν.

We prove the theorem using the following two claims.

Claim 2.3. Let μA and μB be uniformmeasures over the sets A and B respectively. Then, there exists
a bijection φ from A to B such that E[dist(x, φ(x))]=W1(μA,μB).
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Claim 2.4. Let μA and μB be uniform measures over the sets A and B respectively. Then
W1(μA,μB)≤

√
2n.

Proof of Claim 2.3. Observe that any bijection φ from A to B naturally defines a coupling q ofμA
and μB, defined as

q(x, y)=
{ 1

|A| if x ∈A and y= φ(x),

0 otherwise.

Therefore,W1(μA,μB)≤Ex∈A[dist(x, φ(x))].
For the other direction note that in the definition ofW1 we are looking for the infimum of the

linear function L(q)= ∑
(x,y)∈A×B dist(x, y)q(x, y), where the infimum is taken over the Birkhoff

polytope of all n× n doubly stochastic matrices. By the Birkhoff-von Neumann theorem [3, 18]
this polytope is the convex hull whose extremal points are precisely the permutationmatrices. The
optimum is obtained on such an extremal point, and hence there exists a bijection φ from A to B
such thatW1(μA,μB)=E[dist(x, φ(x))]. �
Proof of Claim 2.4. The proof of the claim follows rather directly from the techniques in
transportation theory (see [[12], Section 3.4]). Specifically, using Definition 3.4.2 and combining
Proposition 3.4.1, equation 3.4.42, and Proposition 3.4.3, where X = {0, 1}, and μ is the uniform
distribution on X we have the following theorem.

Theorem 2.5. Let ν be an arbitrary distribution on the discrete hypercube Hn, and let μn be the
uniform distribution onHn. Then

W1(ν,μn)≤
√
1
2
n ·D(ν ||μn),

where D(ν ||μ) is the Kullback-Leibler divergence defined as D(ν ||μ)= ∑
x ν(x) log

(
ν(x)
μ(x)

)
.

In particular, by letting ν =μA be the uniform distribution over the set A of cardi-
nality 2n−1, we have D(μA ||μn)= ∑

x∈A μA(x) log
(
μA(x)
μn(x)

)
= ∑

x∈A 1
|A| log (2)= 1, and hence

W1(μn,μA)≤
√

1
2n ·D(μn || ν)= √

n/2. Analogously, we have W1(μn,μB)≤ √
n/2. Therefore,

by the triangle inequality, we conclude that W1(μA,μB)≤W1(μA,μn)+W1(μn,μB)≤
√
2n, as

required.

This completes the proof of Theorem 1.3.

3. Average stretch for recursive majority of 3’s
In this section we prove Theorem 1.6, showing a mapping from Hn to Arec-majk with constant
average stretch. The key step in the proof is the following lemma.

Lemma 3.1. Let k be a positive integer, and let n= 3k. There exists fk :Hn →Arec-majk satisfying the
following properties.

1. fk(x)= x for all x ∈Arec-majk .
2. For each x ∈Arec-majk there is a unique z ∈ Zrec-majk :=Hn \Arec-majk such that fk(z)= x.
3. For every i ∈ [n] we have Ex∈Hn

[
dist

(
fk(x), fk (x+ ei)

)] ≤ 10.
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We postpone the proof of Lemma 3.1 for now, and show how it implies Theorem 1.6.

Proof of Theorem 1.6. Let fk be the mapping from Lemma 3.1. Define ψ0,ψ1 :Hn−1 →Arec-majk
asψb(x)= fk(x ◦ b), where x ◦ b ∈Hn is the string obtained from x by appending to it b as the n’th
coordinate.

The mappings ψ0,ψ1 naturally induce a bipartite graph G= (V , E), where V =Hn−1 ∪
Arec-majk and E= {

(x,ψb(x)) : x ∈Hn−1, b ∈ {0, 1}}, possibly, containing parallel edges. Note that
by the first two items of Lemma 3.1 the graph G is 2-regular. Indeed, for each x ∈Hn the neigh-
bours of x are N(x)= {ψ0(x)= fk(x ◦ 0),ψ1(x)= fk(x ◦ 1)}, and for each y ∈Arec-majk there is
a unique x ∈Arec-majk and a unique z ∈ Zrec-majk such that fk(x)= fk(z)= 1, and hence N(y)={
x[1,...,n−1], z[1,...,n−1]

}
.

Since the bipartite graph G is 2-regular, it has a perfect matching. Let φ be the bijection from
Hn−1 toArec-majk induced by a perfect matching inG, and for each x ∈Hn let bx ∈Hn be such that
φ(x)=ψbx(x). We claim that avgStretch(φ)=O(1). Let x∼ x′ be uniformly random vertices in
Hn−1 that differ in exactly one coordinate, and let r ∈ {0, 1} be uniformly random. Then

E
[
dist

(
φ(x), φ

(
x′))] = E

[
dist

(
fk

(
x ◦ bx

)
, fk

(
x′ ◦ bx′

))]
≤ E

[
dist

(
fk

(
x ◦ bx

)
, fk (x ◦ r))] +E

[
dist

(
fk (x ◦ r) , fk

(
x′ ◦ r))]

+E
[
dist

(
fk

(
x′ ◦ r) , fk (

x′ ◦ bx′
))]

.
For the first term, since r is equal to bx with probability 1/2 by Lemma 3.1 Item 3 we get

that E
[
dist

(
fk

(
x ◦ bx

)
, fk(x ◦ r))] ≤ 5. Analogously the third term is bounded by 5. In the sec-

ond term we consider the expected distance between f (·) applied on inputs that differ in a
random coordinate i ∈ [n− 1], which is at most 10, again, by Lemma 3.1 Item 3. Therefore,
E

[
dist

(
φ(x), φ

(
x′))] ≤ 20. �

We return to the proof of Lemma 3.1.

Proof of Lemma 3.1. Define fk :Hn →Arec-majk by induction on k. For k= 1 define f1 as

000 �→ 110
100 �→ 101
010 �→ 011
001 �→ 111
x �→ x for all x ∈ {110, 101, 011, 111}.

That is, f1 acts as the identity map for all x ∈Arec-maj1 , and maps all inputs in Zrec-maj1 to
Arec-maj1 in a one-to-one way. Note that f1 is a non-decreasing mapping, that is, (f1(x))i ≥ xi for
all x ∈H3 and i ∈ [3].

For k> 1 define fk recursively using fk−1 as follows. For each r ∈ [3], let Tr =[
(r − 1) · 3k−1 + 1, . . . , r · 3k−1

]
be the r’th third of the interval

[
3k

]
. For x ∈H3k , write x=

x(1) ◦ x(2) ◦ x(3), where x(r) = xTr ∈H3k−1 is the r’th third of x. Let y= (y1, y2, y3) ∈ {0, 1}3 be
defined as yr = rec-majk−1

(
x(r)

)
, and let w= (w1,w2,w3)= f1(y) ∈ {0, 1}3. Define

f (r)k−1
(
x(r)

) =
{
fk−1

(
x(r)

)
if wr 	= yr ,

x(r) otherwise.

Finally, the mapping fk is defined as

fk(x)= f (1)k−1
(
x(1)

) ◦ f (2)k−1
(
x(2)

) ◦ f (3)k−1
(
x(3)

)
.

That is, if rec-majk(x)= 1 then w= y, and hence fk(x)= x, and otherwise, f (r)k−1
(
x(r)

) 	= x(r) for
all r ∈ [3] where yr = 0 and wr = 1.
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Next we prove that fk satisfies the properties stated in Lemma 3.1.

1. It is clear from the definition that if rec-majk(x)= 1, then w= y, and hence fk(x)= x.
2. Next, we prove by induction on k that the restriction of fk to Zrec-majk induces a bijec-

tion. For k= 1 the statement clearly holds. For k> 2 suppose that the restriction of fk−1
to Zrec-majk−1 induces a bijection. We show that for every x ∈Arec-majk the mapping fk
has a preimage of x in Zrec-majk . Write x= x(1) ◦ x(2) ◦ x(3), where x(r) = xTr ∈H3k−1 is
the r’th third of x. Let w= (w1,w2,w3) be defined as wr = rec-majk[k− 1]

(
x(r)

)
. Since

x ∈Arec-majk it follows that w ∈ {110, 101, 011, 111}. Let y= (y1, y2, y3) ∈ Zrec-maj1 such
that f1(y)=w. For each r ∈ [3] such that wr = 1 and yr = 0 it must be the case that
x(r) ∈Arec-majk−1 , and hence, by the induction hypothesis, there is some z(r) ∈ Zrec-majk−1

such that fk−1
(
z(r)

) = x(r). For each r ∈ [3] such that yr =wr define z(r) = x(r). Since
y= (y1, y2, y3) ∈ Zrec-maj1 , it follows that z = z(1) ◦ z(2) ◦ z(3) ∈ Zrec-majk . It is immediate by
the construction that, indeed, fk(z)= x.

3. Fix i ∈ [
3k

]
. In order to prove E[dist(fk(x), fk(x+ ei))]=O(1) consider the following

events.

E1 = {
rec-majk(x)= 1= rec-majk(x+ ei)

}
,

E2 = {
rec-majk(x)= 0, rec-majk(x+ ei)= 1

}
,

E3 = {
rec-majk(x)= 1, rec-majk(x+ ei)= 0

}
,

E4 = {
rec-majk(x)= 0= rec-majk(x+ ei)

}
.

Then E
[
dist

(
fk(x), fk(x+ ei)

)] = ∑
j=1,2,3,4 E

[
dist

(
fk(x), fk(x+ ei)

) |Ej
] · P[

Ej
]
. The

following three claims prove an upper bound on E
[
dist

(
fk(x), fk(x+ ei)

)]
.

Claim 3.2. E
[
dist

(
fk(x), fk(x+ ei)

) |E1
] = 1.

Claim 3.3. E
[
dist

(
fk(x), fk(x+ ei)

) |E2
] ≤ 2 · 1.5k.

Claim 3.4. E
[
dist

(
fk(x), fk(x+ ei)

) |E4
] · P[E4]≤ 8.

By symmetry, it is clear that E
[
dist

(
fk(x), fk(x+ ei)

) |E2
] =E

[
dist

(
fk(x), fk(x+ ei)

) |E3
]
.

Note also that P
[
E1

]
< 0.5 and P [E2 ∪ E3]= 2−k.3 Therefore, the claims above imply that

E
[
dist

(
fk(x), fk(x+ ei)

)] =
∑

j=1,2,3,4
E

[
dist

(
fk(x), fk(x+ ei)

) |Ei
] · P[Ei]≤ 1 · 0.5

+ 2 · 1.5k · 2−k + 8≤ 10,

which completes the proof of Lemma 3.1.

Next we prove the above claims.

Proof of Claim 3.2. If E1 holds then dist
(
fk(x), fk(x+ ei)

) = dist(x, x+ ei)= 1. �
Proof of Claim 3.3. We prove first that

E
[
dist

(
x, fk(x)

) |rec-majk(x)= 0
] = 1.5k. (1)

3Indeed, note that P [E2 ∪ E3]= P
[
rec-majk(x) 	= rec-majk(x+ ei)

]
, and suppose for concreteness that i= 1. We

claim that P
[
rec-majk(x) 	= rec-majk(x+ e1)

] = 2−k, which can be seen by induction on k using the recurrence
P
[
rec-majk(x) 	= rec-majk(x+ e1)

] = P
[
rec-majk−1

(
x(2)

) 	= rec-majk−1
(
x(3)

)] ·P[
rec-majk−1

(
x(1)

) 	=rec-majk−1
(
x(1)+e1

)]
= (1/2) · P [

rec-majk−1
(
x(1)

) 	= rec-majk−1
(
x(1) + e1

)] = (1/2) · 2−(k−1) = 2−k.
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The proof is by induction on k. For k= 1 we have E
[
dist

(
x, f1(x)

) |rec-majk(x)= 0
] =

1.5 as there are two inputs x ∈ Zrec-majk with dist
(
x, f1(x)

) = 1 and two x’s in Zrec-majk with
dist

(
x, f1(x)

) = 2. For k> 1 suppose that E
[
dist(x, fk−1(x))|rec-majk−1(x)

] = 1.5k−1. Write each
x ∈H3k as x= x(1) ◦ x(2) ◦ x(3), where x(r) = xTr ∈H3k−1 is the r’th third of x, and let y= (y1, y2, y3)
be defined as yr = rec-majk−1

(
x(r)

)
. Since Ex∈H3k−1

[
rec-majk−1(x)

] = 0.5, it follows that for a
random z ∈ Zrec-majk each y ∈ {000, 100, 010, 001} happens with the same probability 1/4, and
hence, using the induction hypothesis we get

E
[
dist

(
x, fk(x)

) |rec-majk(x)= 0
] = P

[
y ∈ {100, 010}|rec-majk(x)= 0

] × 1.5k−1

+ P
[
y ∈ {000, 001}|rec-majk(x)= 0

] × 2 · 1.5k−1

= 1.5k,

which proves equation (1).
Next we prove that4

E
[
dist

(
x, fk(x)

) |E2
] ≤

k−1∑
j=0

1.5j = 2 ·
(
1.5k − 1

)
. (2)

Note that equation (2) proves Claim 3.3. Indeed, if E2 holds then using the trian-
gle inequality we have dist

(
fk(x), fk(x+ ei)

) ≤ dist(fk(x), x)+ dist(x, x+ ei)+ dist(x+ ei, fk(x+
ei))= dist(fk(x), x)+ 1, and hence

E[dist(fk(x), x)|E2]+ 1≤ 2 · (1.5k − 1)+ 1< 2 · 1.5k,
as required.

We prove equation (2) by induction on k. For k= 1 equation (2) clearly holds. For the induc-
tion step let k> 1. As in the definition of fk write each x ∈H3k as x= x(1) ◦ x(2) ◦ x(3), where
x(r) = xTr is the r’th third of x, and let y= (y1, y2, y3) be defined as yr = rec-majk−1

(
x(r)

)
.

Let us suppose for concreteness that i ∈ T1. (The cases of i ∈ T2 and i ∈ T3 are handled sim-
ilarly.) Note that if rec-majk(x)= 0, rec-majk(x+ ei)= 1, and i ∈ T1, then y ∈ {010, 001}. We
consider each case separately.

1. Suppose that y= 010. Then w= f (y)= 011, and hence f (x) differs from x only in T3.
Taking the expectation over x such that rec-majk(x)= 0 and rec-majk(x+ ei)= 1 by
equation (1) we get E

[
dist(x, f (x))|E2, y= 010

] =E
[
dist

(
fk−1

(
x(3)

)
, x(3)

) |rec-majk−1(
x(3)

) = 0
] = 1.5k−1.

2. If y= 001, then w= f1(y)= 111, and f (x) differs from x only in T1 ∪ T2. Then

E
[
dist(x, f (x))|E2, y= 001

] = E

[
dist

(
fk−1

(
x(1)

)
, x(1)

)|E2, y= 001
]

+E

[
dist

(
fk−1

(
x(2)

)
, x(2)

)|E2, y= 001
]
.

Denoting by E′
2 the event that rec-majk−1

(
x(1)

) = 0, rec-majk−1(x(1) + ei)= 1 (i.e., the
analogue of the event E2 applied on rec-majk−1), we note that

E

[
dist

(
fk−1

(
x(1)

)
, x(1)

)|E2, y= 001
]
=E

[
dist

(
fk−1

(
x(1)

)
, x(1)

)|E′
2

]
,

4Note that equation (2) can be thought of equation (1) conditioned on the event rec-majk(x+ ei)= 1, which happens with
probability only 2−k. A naive application of Markov’s inequality would only say that E[dist(x, fk(x))|E2]≤ 1.5k · 2k, which
would not suffice for us. Equation (2) says that the expected distance is comparable to 1.5k even when conditioning on this
small event.
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which is upper bounded by
∑k−2

j=0 1.5j using the induction hypothesis. For the second term
we have

E

[
dist

(
fk−1

(
x(2)

)
, x(2)

)|E2, y= 001
]
=E

[
dist

(
fk−1

(
x(2)

)
, x(2)

)|rec-majk−1
(
x(2)

) = 0
]
,

which is at most 1.5k−1 using equation (1). Therefore, for y= 001 we have

E[dist(x, f (x))|E2, y= 001]≤
k−2∑
j=0

1.5j + 1.5k−1.

Using the two cases for y we get
E

[
dist

(
x, fk(x)

)|E2] = E
[
dist

(
x, fk(x)

)|E2, y= 010
] · P[

y= 010|E2
]

+E
[
dist

(
x, fk(x)

)|E2, y= 001
] · P[

y= 001|E2
]

≤
k−1∑
j=0

1.5j.

This proves equation (2) for the case where i ∈ T1. The other two cases are handled similarly.
This completes the proof of Claim 3.3. �
Proof of Claim 3.4. For a coordinate i ∈ [n] and for 0≤ j≤ k let r = ri(j) ∈N be such that
i ∈ [(r − 1) · 3j + 1, . . . , r · 3j], and denote the corresponding interval by Ti(j)= [(r − 1) · 3j +
1, . . . , r · 3j].5 These are the coordinates used in the recursive definition of rec-majk by the
instance of rec-majj that depends on the i’th coordinate.

For x ∈Hn and x′ = x+ ei, define ν(x) as

ν(x)=
⎧⎨
⎩min

{
j ∈ [k] : rec-majj

(
xTi(j)

) = rec-majj
(
x′
Ti(j)

)}
if rec-majk(x)= rec-majk(x′),

k+ 1 if rec-majk(x) 	= rec-majk(x′).

That is, in the ternary tree defined by the computation of rec-majk, ν(x) is the lowest j on the
path from the i’th coordinate to the root where the computation of x is equal to the computation
of x+ ei. Note that if x is chosen uniformly fromHn, then

P[ν = j]=
{
2−j if j ∈ [k],

2−k if j= k+ 1.
(3)

Below we show that by conditioning on E4 and on the value of ν we get

E
[
dist

(
fk(x), fk(x+ ei)

) |E4, ν = j
] ≤ 4 · 1.5j. (4)

Indeed, suppose that E4 holds. Assume without loss of generality that xi = 0, and let x′ = x+ ei.
Note that fk(x) and fk(x′) differ only on the coordinates in the interval Ti(ν). Let w= xTi(ν), and
define y= (y1, y2, y3) ∈ {0, 1}3 as yr = rec-majν−1(w(r)) for each r ∈ [3], wherew(r) is the r’th third
ofw. Similarly, letw′ = x′

Ti(ν), and let y
′ = (

y′
1, y

′
2, y

′
3
) ∈ {0, 1}3 be defined as y′

r = rec-majν−1(w′(r))
for each r ∈ [3]. This implies that

E
[
dist

(
fk(x), fk(x+ ei)

) |E4
] =E

[
dist

(
fν(w)

)
, fν(w′))|E4

]
.

Furthermore, if rec-majν
(
xTi(ν)

) = 1
(
and rec-majν

(
x′
Ti(ν)

) = 1
)
, then fk(x)Ti(ν) = xTi(ν), and

thus dist
(
fk(x), fk(x′)

) = 1.

5For example, for j= 0 we have Ti(0)= {i}. For j= 1 if i= 1 (mod 3) then Ti(1)= [i, i+ 1, i+ 2]. For j= k− 1 the interval
Ti(k− 1) is one of the intervals T1, T2, T3. For j= k we have Ti(k)= [1, . . . , 3k].
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Next we consider the case of rec-majk
(
xTi(ν)

) = 0
(
and rec-majk

(
x′
Ti(ν)

) = 0
)
. Since xi = 0 and

x′ = x+ ei, it must be that y= 000 and y′ is a unit vector. Suppose first that y′ = 100, that is, the
coordinate i belongs to the first third of Ti(ν). Write w=w(1) ◦w(2) ◦w(3), where each w(r) is one
third of w. Analogously, write w′ =w′(1) ◦w′(2) ◦w′(3), where each w′(r) one third of w′. Then,
since w′ =w+ ei we have

E
[
dist

(
fj (w) ,w

) |E4, ν = j
] = E

[
dist

(
fj−1

(
w(1)),w(1)

)
|rec-majj−1

(
w(1))

= 0, rec-majj−1
(
w(1) + ei

) = 1
]

+E

[
dist

(
fj−1

(
w(2)),w(2)

)
|rec-majj−1

(
w(2)) = 0

]
≤ 2 · (1.5j−1 − 1

) + 1.5j−1 = 3 · 1.5j−1 − 2,

where the last inequality is by equation (1) and equation (2). Similarly,

E
[
dist

(
fj(w′),w′) |E4, ν = j

] =E

[
dist

(
fj−1

(
w′(3)),w′(3)) |rec-majj−1

(
w′(3)) = 0

]
≤ 1.5j−1,

where the last inequality is by equation (1). Therefore,

E
[
dist

(
fν(w), fν(w′)

) |E4, ν = j
]
< 4 · 1.5j−1.

The cases of y= 010 and 001 are handled similarly, and it is straightforward to verify that in
these cases we also get the bound of 4 · 1.5j−1.

By combining equation (3) with equation (4) it follows that

E[dist
(
fk(x), fk(x+ ei)

) |E4] · P[E4] =
k∑

j=1
E[dist

(
fk(x), fk(x+ ei)

) |E4, ν = j] · P[ν = j|E4] · P[E4]

≤
k∑

j=1
4 · 1.5j−1 · P[ν = j]

≤ 4 ·
k∑

j=1
1.5j−1 · 2−j ≤ 8.

This completes the proof of Claim 3.4. �

4. Average stretch for tribes
In this section we prove Theorem 1.8, showing a mapping from Hn to A∗

tribes with O(log (n))
average stretch. Let μ1

tribes be the uniform distribution on Atribes, and let μ0
tribes be the uniform

distribution on Ztribes =Hn \Atribes. The proof consists of the following two claims.

Claim 4.1. For μ1
tribes and μ

0
tribes as above it holds that

W1
(
μ0
tribes,μ

1
tribes

) =O(log (n)).

Next, let A∗
tribes ⊆Hn be an arbitrary superset of Atribes of density 1/2, and let μ∗

tribes be the
uniform distribution on A∗

tribes.

Claim 4.2. Consider Hn−1 as {x ∈Hn : xn = 0}, and let μn−1 be the uniform measure on Hn−1.
Then,

W1
(
μn−1,μ∗

tribes
) ≤W1

(
μ0
tribes,μ

1
tribes

) +O(log (n)).
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By combining Claim 4.1 and Claim 4.2 we get that the average transportation distance between
Hn−1 and A∗

tribes is W1
(
μn−1,μ∗

tribes
) =O(log (n)). By Claim 2.3 it follows that there exists

φtribes :Hn−1 →A∗
tribes such that E[dist(x, φtribes(x))]=O(log (n)), and using Proposition 1.4 we

conclude that avgStretch(φtribes)=O(log (n)). This completes the proof of Theorem 1.8.
Below we prove Claim 4.1 and Claim 4.2.

Proof of Claim 4.1. Let D =Dw the uniform distribution over {0, 1}w \ {1w}, let p= 2−w, and
denote byL=Lw,s the binomial distribution Bin(p, s) conditioned on the outcome being positive.
That is,

P[L= �]=
(s
�

)
p�(1− p)s−�∑s

j=1
(s
j
)
pj(1− p)s−j ∀� ∈ {1, . . . , s}.

Note that μ0
tribes is equal to the product distribution Ds. Note also that in order to sample

from the distribution μ1
tribes, we can first sample L ∈ {1, . . . , s}, then choose L random tribes that

vote unanimously 1, and for the remaining s−L tribes sample their values in this tribe according
to D.

We define a coupling qtribes between μ0
tribes and μ

1
tribes as follows. First sample x according to

μ0
tribes. Then, sample L ∈ {1, . . . , s}, choose L tribes T ⊆ [s] uniformly, and let S= {(t − 1)w+

j : t ∈ T, j ∈ [w]} be all the coordinates participating in all tribes in T. Define y ∈Hn as yi = 1 for
all i ∈ S, and yi = xi for all i ∈ [n] \ S. It is clear that y is distributed according to μ1

tribes, and hence
qtribes is indeed a coupling between μ0

tribes and μ
1
tribes.

We next show that E(x,y)∼qtribes[dist(x, y)]=O(log (n)). We have E(x,y)∼qtribes[dist(x, y)]≤
E[L ·w], and by the choice of parameters, we have w≤ log (n) and E[L]= E[Bin(2−w,s)]

1−P[Bin(2−w,s)=0] =
s·2−w

1−2−ws . By the choice of s≤ ln (2)2w +O(1) it follows that E[L]=O(1), and hence

W1
(
μ0
tribes,μ

1
tribes

) ≤E(x,y)∼qtribes[dist(x, y)]≤E[L ·w]=O(log (n)).

This completes the proof of Claim 4.1. �
Proof of Claim 4.2. We start by showing that

W1
(
μn,μ1

tribes
) ≤W1

(
μ0
tribes,μ

1
tribes

)
, (5)

where μn is the uniform measure on Hn. Indeed, let qtribes be a coupling between μ0
tribes and

μ1
tribes. Define a coupling qn between μn and μ1

tribes as

qn(x, y)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|Ztribes|
2n

· qtribes(x, y) if x ∈ Ztribes and y ∈Atribes,

1/2n if x= y ∈Atribes,

0 otherwise.

It is straightforward to verify that qn is indeed a coupling betweenμn andμ1
tribes. Letting qtribes

be a coupling for which E(x,y)∼qtribes[dist(x, y)]=W1
(
μ0
tribes,μ

1
tribes

)
we get
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W1
(
μn,μ1

tribes
) ≤

∑
x∈Hn

y∈Atribes

dist(x, y)qn(x, y)

=
∑

x∈Ztribes
y∈Atribes

dist(x, y)qn(x, y)+
∑

x∈Atribes
y∈Atribes

dist(x, y)qn(x, y)

= |Ztribes|
2n

E(x,y)∼qtribes[dist(x, y)]+
∑

x∈Atribes
dist(x, x)qn(x, x)

= |Ztribes|
2n

·W1
(
μ0
tribes,μ

1
tribes

)
<W1

(
μ0
tribes,μ

1
tribes

)
,

which proves equation (5).
Next, we show that

W1
(
μn−1,μ1

tribes
) ≤W1

(
μn,μ1

tribes
) + 1. (6)

Indeed, let qn be a coupling between μn and μ1
tribes minimizing∑

(x,y)∈Hn×Atribes dist(x, y)qn(x, y). Define a coupling qn−1 between μn−1 and μ1
tribes as

qn−1(x, y)= qn(x, y)+ qn(x+ en, y) ∀x ∈Hn−1 and y ∈Atribes.

It is clear that qn−1 is a coupling between μn−1 and μ1
tribes. Next we prove equation (6).

W1
(
μn−1,μ1

tribes
) ≤

∑
x∈Hn−1
y∈Atribes

dist(x, y)qn−1(x, y)

=
∑

x∈Hn−1
y∈Atribes

dist(x, y)qn(x, y)+
∑

x∈Hn−1
y∈Atribes

dist(x, y)qn(x+ ei, y)

≤
∑

x∈Hn−1
y∈Atribes

dist(x, y)qn(x, y)+
∑

x∈Hn−1
y∈Atribes

(dist(x+ ei, y)+ 1)qn(x+ ei, y)

=
∑
x∈Hn

y∈Atribes

dist(x, y)qn(x, y)+
∑

x∈Hn−1
y∈Atribes

qn(x+ ei, y)

≤ W1
(
μn,μ1

tribes
) + 1,

which proves equation (6).
Next, we show that

W1
(
μn−1,μ∗

tribes
) ≤W1

(
μn−1,μ1

tribes
) +O(log (n)). (7)

In order to prove equation (7), let δ = 1
2 − |Atribes|

2n . By the discussion in subsection 1.2.2 we
have δ =O

(
log (n)

n

)
. Then

∣∣A∗
tribes \Atribes

∣∣ = δ · 2n. Let qn−1 be a coupling between μn−1 and
μ1
tribes such that E(x,y)∼qn−1 [dist(x, y)]=W1

(
μn−1,μ1

tribes
)
. Define a coupling q∗ between μn−1

and μ∗
tribes as

q∗(x, y)=
{
(1− 2δ) · qn−1(x, y) if x ∈Hn−1 and y ∈Atribes,

4 · 2−2n if x ∈Hn−1 and y ∈A∗
tribes \Atribes.
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It is straightforward to verify that q∗ is a coupling between μn−1 and μ∗
tribes. Next we prove

equation (7).

W1
(
μn−1,μ∗

tribes
) ≤

∑
x∈Hn−1
y∈A∗

tribes

dist(x, y) · q∗(x, y)

= (1− 2δ)
∑

x∈Hn−1
y∈Atribes

dist(x, y)qn−1(x, y)+
∑

x∈Hn−1
y∈A∗

tribes\Atribes

dist(x, y) · 4 · 2−2n

≤ (1− 2δ) ·W1
(
μn−1,μ1

tribes
) + 2δ · max

x∈Hn−1
y∈Hn

(dist(x, y)).

Equation (7) follows from the fact that max(dist(x, y))≤ n and δ =O
(
log (n)

n

)
.

By combining equations (5) to (7) we get W1
(
μn−1,μ∗

tribes
) ≤W1

(
μ0
tribes,μ

1
tribes

) +
O(log (n)). �

5. Concluding remarks and open problems

Uniform upper bound on the average stretch. We’ve shown a uniform upper bound ofO
(√

n
)
on

the average transportation distance E[dist(x, φ(x))] fromHn−1 to any set A⊆Hn of density 1/2,
where Hn−1 is treated as {x ∈Hn : xn = 0}. This bound is tight up to a multiplicative constant.
Indeed, it is not difficult to see that for any bijection φ from Hn−1 to Amaj = {x ∈Hn :

∑
i xi >

n/2} (for odd n) the average transportation of φ is E[dist(x, φ(x))]≥	 (√
n
)
.

In contrast, we believe that the upper bound of O
(√

n
)
on the average stretch is not tight, and

it should be possible to improve it further.

Problem 5.1. Prove/disprove that for any set A⊆Hn of density 1/2 there exists a mapping
φA :Hn−1 →A with avgStretch(φ)= o

(√
n
)
.

The tribes function. Considering our results about the tribes function, we make the following
conjecture.

Conjecture 5.2. Let w be a positive integer, and let s be the largest integer such that 1− (1−
2−w)s ≤ 1/2. For n= s ·w let tribes :Hn → {0, 1} be defined as a DNF consisting of s disjoint
clauses of width w, and let Atribes = {x ∈Hn : tribes(x)= 1}. There exists A∗

tribes ⊆Hn a superset
of Atribes of density μn

(
A∗
tribes

) = 1/2 such that W1(μn−1,μ∗
tribes)=O(1), where μ∗

tribes is the
uniform distribution on A∗

tribes.

As a first step toward the conjecture we proposed the following strengthening of Claim 4.1.

Problem 5.3. Let μ1
tribes be the uniform distribution on Atribes, and let μ0

tribes be the uniform
distribution on Ztribes =Hn \Atribes. It is true that W1

(
μ0
tribes,μ

1
tribes

) =O(1)?

A candidate set that requires large average stretch. We propose a candidate set A∗ for which
we hope that any mapping from Hn−1 to A∗ requires large average stretch. The set is
defined as follows. Let k∗ ∈ [n] be the maximal k such that

( n
≤k

) = ∑k
j=0

(n
j
) ≤ 2n−2. Let B01/4 ={

x ∈Hn :
∑

i∈[n] xi ≤ k
}
and B11/4 = {

x ∈Hn :
∑

i∈[n] xi ≥ n− k
}
be two (disjoint) antipodal balls
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of radius k∗, and let C ⊆Hn \
(
B01/4 ∪ B11/4

)
be an arbitrary set of size |C| = 2n−1 −

∣∣∣B01/4 ∪ B11/4
∣∣∣.

Define A∗ = B01/4 ∪ B11/4 ∪ C.

Conjecture 5.4. There is no bijection φ∗ :Hn−1 →A∗ with avgStretch(φ∗)=O(1).
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