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1. Introduction

Let F' be a non-Archimedean local field of residue characteristic p and G a connected
reductive group over F. Motivated by the modulo p Langlands program, we study the
modulo p representation theory of G. As in the classical (the representations over the
field of complex numbers), Hecke algebras are useful tools for the study of modulo p
representations. Especially, a pro-p-Iwahori Hecke algebra which is attached to a pro-p-
Iwahori subgroup I(1) has an important role in the study. (One reason is that any nonzero
modulo p representation has a nonzero I(1)-fixed vector.) For example, this algebra is
one of the most important tool for the proof of the classification theorem [5].

We focus on the representation theory of pro-p-Iwahori Hecke algebra. Since the simple
modules are classified [3, 14, 18], we study its homological properties. The aim of this
paper is to calculate the extension between simple modules. Note that such calculation
was used to calculate the extension between irreducible modulo p representations of G
when G = GL2(Q,) [16]. As far as the author knows, a calculation of extensions was done
only when G = GLs. Our calculation is in general, namely we do not assume anything
about G. We also remark a related result in [1]. If m,7m5 are modulo p irreducible
subquotients of principal series of G, by the main theorem of [1], then we have an
embedding Extlﬂ(ﬂ{(l),ﬂé(l)) < Extg(m1,m2). Hence, the calculation in this paper should
be helpful to calculate extensions between m; and ms. When 7,79 are principal series,
some calculations are done by Hauseux [10, 11].

We explain our result. For each standard parabolic subgroup P, let Hp be the pro-
p-Iwahori Hecke algebra of the Levi subgroup of P. Then for a module o of Hp, we
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can consider: the parabolic induction Ip(o) which is an H-module, a certain parabolic
subgroup P(o) containing P, a generalized Steinberg module Stg(o) (o), where @ is a
parabolic subgroup between P and P(c). By [3], each simple module is constructed
by three steps: (1) starting with a supersingular module o of Hp, where P is a

parabolic subgroup; (2) take a generalized Steinberg module Stg(g) (o) (3) and take a

parabolic induction Ip,) (Stg(o) (0)). (We do not explain the detail of notation here.) Our

calculation follows these steps. Let 1 = Ip(4,) (Stgial) (01)) and 7o = Ip(s,) (StggUZ)(ag))
be two simple modules here oy (resp. o2) is a simple supersingular module of Hp, (resp.
Hp,). '

(1) By considering the central characters, the extension Ext}, (m1,m2) is zero if P # P,
(Lemma 3.1). Hence, we may assume P; = P5. Set P = P;.

(2) We prove

i P(o P(o i 4 4
Ext}y (Ip(oy) (Stor" (01)) p(og) (St "> (02))) = Exctl, , (Sté, (01),5t6, (02))

for some @},Q5 and P’ (Proposition 3.4). For the proof, we use the adjoint functors of
parabolic induction and results in [4]. Hence, it is sufficient to calculate the extension
groups between generalized Steinberg modules.

(3) We prove

Extid(Sth (01),Stg,(02)) ~ Exté_?r(e(al),e(ag))

for some (explicitly given) r € Z>q or 0 (Theorem 3.8) using some involutions on H and
results in [2]. Here, e(0) is the extension of o to H (Definition 2.4).
(4) We prove

Extl, (e(01),e(09)) =~ Ext%ip/j(ahoz)

for some ideal I C Hp which acts on o1 and o9 by zero. We use results of Ollivier—
Schneider [15] for the proof. The algebra Hp/I is not a pro-p-Iwahori Hecke algebra
attached to a connected reductive group but a generic algebra in the sense of Vignéras
[20, 4.3]. Hence, it is sufficient to calculate the extensions between supersingular simple
modules of a generic algebra.

(5) Now let H be a generic algebra and 71,72 be simple supersinglar modules. The
algebra has the following decomposition as vector spaces: H = H> ®ciz, C[(1)]. Here,
H> C H is an algebra called ‘the affine subalgebra’, Q(1) is a certain commutative group
acting on H*%, Z, is a normal subgroup of Q(1) and we have an embedding C[Z,] <
H* which is compatible with the action of Q(1) on H*. Set Q = Q(1)/Z,. By this
decomposition and Hochschild—Serre type spectral sequence, we have an exact sequence

0 — H(Q, Homygess (11,m2)) — Bxty, (m1,m2) — Extiu (11,72)

We prove that the last map is surjective (Theorem 4.5).

Therefore, it is sufficient to calculate two groups: H'(£2, Homyas(m1,m2)) and
Ext%{aff (m1,m2)%. By the classification result of supersingular simple modules [14, 18], the
restriction of 71,75 to H*! are the direct sum of characters of H*¥. Hence, Homyyas (71,72)
is easily described, and with this description we can calculate H'($, Homyae (m1,72))
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using well-known calculation of group cohomologies. Note that €2 is commutative. We also
calculate Ext}u«(Z1,52), where 21,2, are characters of H*! (Proposition 4.1) following
the method of Fayers [8]. This is also calculated by Nadimpalli [13]. Using this description,
we can calculate EXt'}_Laff(ﬂ-l,ﬂ-2)Q, and this finishes the calculation of extensions between
simple H-modules.

In the last two subsections, examples for GL,, are given.

2. Preliminaries

2.1. Pro-p-Iwahori Hecke algebra

Let H be a pro-p-Iwahori Hecke algebra over a commutative ring C' [20]. We study

modules over H in this paper. In this paper, a module means a right module. The algebra

H is defined with combinatorial data (Wag, Sam, 2, W, W (1),Z,) and a parameter (g,c).
We recall the definitions. The data satisfy the following:

(Watt, Sagr) is a Coxeter system.

Q acts on (Wag,Sast)-

W =Wag x Q.

Z, is a finite commutative group.

The group W (1) is an extension of W by Z,, namely we have an exact sequence
1-Z,-W(Q1)->W - 1.

The subgroup Z,; is normal in W (1). Hence, the conjugate action of w € W (1) induces
an automorphism of Z,;, hence of the group ring C[Z,]. We denote it by ¢ — w-c.

Let Ref(Wag) be the set of reflections in W,g and Ref (W, (1)) the inverse image of
Ref (W) in W (1). The parameter (g,c) is maps g: Sag — C and ¢: Ref(Wag (1)) — C[Z,]
with the following conditions. (Here, the image of s by ¢ (resp. ¢) is denoted by ¢4 (resp.

Cs)-)

e For we W and s € Sug, if wsw™ € Sag, then quew-1 = ¢s.
e For weW(l) and s € Ref(Wag (1)), Copsw-1 =W Cs.
o For s € Ref(W.(1)) and t € Z,;, we have ¢;s = tcs.

Let Sag(1) be the inverse image of S,g in W(1). For s € Sa(1), we write g5 for gs, where
5 € Sag is the image of s. The length function on W,g is denoted by ¢, and its inflation
to W and W (1) is also denoted by Z.

The C-algebra H is a free C-module and has a basis {T% }wew (1)- The multiplication
is given by

o (Quadratic relations) T2 = q,Ty2 + csTs for s € Sag(1).
e (Braid relations) T, = T, Ty if L(vw) = £(v) + £(w).

We extend q: Sag — C to ¢: W — C' as follows. For w € W, take sq,...,s; and u € Q) such

that w = s1---s;u and [ = ¢(w). Then put ¢, = ¢s, -+ ¢s,- From the definition, we have
Guw-1 = Gu. We also put q,, = ¢z for w € W (1) with the image w in W.
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2.2. The data from a group

Let F' be a non-Archimedean local field, x its residue field, p its residue characteristic and
G a connected reductive group over F. We can get the data in the previous subsection
from G as follows. See [20], especially 3.9 and 4.2 for the details.

Fix a maximal split torus S, and denote the centralizer of S in G by Z. Let Z° be
the unique parahoric subgroup of Z and Z(1) its pro-p radical. Then the group W (1)
(resp. W) is defined by W (1) = Ng(Z)/Z(1) (resp. W = Ng(Z)/Z°), where Ng(Z) is
the normalizer of Z in G. We also let Z, = Z°/Z(1). Let G’ be the group generated by
the unipotent radical of parabolic subgroups [5, I1.1] and W,g the image of G’ N Ng(Z)
in W. Then this is a Coxeter group. Fix a set of simple reflections S,g. The group W has
the natural length function, and let {2 be the set of length zero elements in W. Then we
get the data (Wag, Sag, QW , W (1),Z,).

Consider the apartment attached to S and an alcove surrounded by the hyperplanes
fixed by Sag. Let I(1) be the pro-p-Iwahori subgroup attached to this alcove. Then with
gs = #(I(1)sI(1)/1(1)) for s € Sag with a lift s € Ng(Z) and suitable ¢g, the algebra H
is isomorphic to the Hecke algebra attached to (G,I(1)) [20, Proposition 4.4].

When the data come from the group G, let W,g(1) be the image of G'NNg(Z) in W (1)
and put Ha.g = @wewaff(l) CT,. This is a subalgebra of .

In this paper, except Section /, we assume that the data come from a connected reductive

group.

2.3. The root system and the Weyl groups

Let Wy = Ng(Z)/Z be the finite Weyl group. Then this is a quotient of W. Recall that we
have the alcove defining I(1). Fix a special point @ from the border of this alcove. Then
Wy ~ Staby xg, and the inclusion Staby, &g < W is a splitting of the canonical projection
W — Wy. Throughout this paper, we fix this special point and regard Wy as a subgroup
of W. Set Sy = Sag MWy C W. This is a set of simple reflections in Wj. For each w € Wy,
we fix a representative n,, € W (1) such that 1y, w, = My, N, if L(wrwa) = £(wy) + £(ws).

The group Wy is the Weyl group of the root system X attached to (G,S). Our fixed
alcove and special point give a positive system of ¥, denoted by ¥T. The set of simple
roots is denoted by A. As usual, for a € A, let s, € Sy be a simple reflection for «.

The kernel of W (1) — Wy (resp. W — W) is denoted by A(1) (resp. A). Then Z,, C A(1),
and we have A = A(1)/Z,. The group A (resp. A(1)) is isomorphic to Z/Z° (vesp. Z/Z(1)).
Any element in W(1) can be uniquely written as n,A, where w € Wy and A € A(1). We
have W =Wy x A.

2.4. The map v

The group W acts on the apartment attached to S, and the action of A is by the
translation. Since the group of translations of the apartment is X.(S)®z R, we have a
group homomorphism v: A — X,.(S)®zR. The compositions A(1) - A — X, (S) ®zR and
Z — A — X.(5)®zR are also denoted by v. The homomorphism v: Z — X, (S)®z R ~
Homgz(X™*(S5),R) is characterized by the following: For ¢ € S and x € X*(S), we have
v(t)(x) = —val(x(t)), where val is the normalized valuation of F.
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We call A € A(1) dominant (resp. anti-dominant) if v()\) is dominant (resp. anti-
dominant).

Since the group Weog is a Coxeter system, it has the Bruhat order denoted by <.
For wy,wy € W, we write wy < wsq if there exists u € ) such that wiu,wou € Wag and
wiu < wau. Moreover, for wy,wy € W (1), we write wy < ws if wy € Wg(1)wy and Wy < ws,
where w1,ws are the image of wy,wy in W, respectively. We write w; < ws if wy; < wy or
w1 = wsa.

2.5. Other basis

For w € W(1), take s1,---,8; € Sagr(1) and w € W(1) such that | = ¢(w), ¢(u) =0 and
w=s1--su. Set T = (Ty, —cs,) - (Ts, — ¢s;)Ty. Then this does not depend on the
choice, and {T}}},ew (1) is a basis of H. In H[gE'], we have T}, = quuj_ll.

For a spherical orientation o, there is a basis {£,(w)}wew ) of H introduced in [20,
Definition 5.22]. This satisfies the following product formula [20, Theorem 5.25].

Eo(w1) Eou, (W) = 42 qul> 43l Bo(wiws). (2.1)
—1/2 1/2 1/2 .
Remark 2.1. The term qu;w,qu; gu, does not make sense in a usual way. See [4, Remark

2.2).

2.6. Parabolic induction

Since we have a positive system Y%, we have the minimal parabolic subgroup B with a
Levi part Z. In this paper, parabolic subgroups are always standard, namely containing B.
Note that such parabolic subgroups correspond to subsets of A.

Let P be a parabolic subgroup. Attached to the Levi part of P containing Z, we have
the data (Wag, p,Sast, p,2p, Wp,Wp(1),Z,) and the parameters (¢p,cp). Hence, we have
the algebra Hp. The parameter cp is given by the restriction of ¢; hence, we denote it
just by ¢. The parameter ¢p is defined as in [3, 4.1].

For the objects attached to this data, we add the suffix P. We have the set of simple
roots A p, the root system X p and its positive system E;, the finite Weyl group Wy p, the
set of simple reflections So p C Wy p, the length function £p and the base {Tf}wewp(l),
{T]*}wewn ) and {EF (w)}wew, 1) of Hp. Note that we have no Ap, Ap(1) and Z, p
since they are equal to A, A(1) and Z,.

An element n,A € Wp(1), where w € Wp o and A € A(1) is called P-positive (resp.
P-negative) if for any a € %\ X} we have (a,v(\)) <0 (resp. (a,v()\)) >0). Set H}f =
@, CTE, where w € Wp(1) runs P-positive elements, and define Hp by the similar way.
Then these are subalgebras of Hp. The linear maps jlf: 7—[% — H and jlﬁ*: ’H% —H
defined by j&(T.D) = T,, and j5*(T5*) = T are algebra homomorphisms.

Proposition 2.2 ([19, Theorem 1.4]). Let A5 (resp. Ap) be in the center of Wp(1)
such that {a,v(A5)) <0 (resp. (a,v(Ap)) >0) for all o € ST\ X}h. Then T;}D = ng =

EP (Af) (resp. Tf, = Tf,* =EL (\p)) is in the center of Hp, and we have Hp =
: s = :
HJISEf_YP(AIﬁ)’l (resp. Hp = H;Ef_vp()\;)*l),
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Now, for an H p-module o, we define the parabolically induced module Ip(c) by
Ip(o) = HOHI(H;J;*)(’H,CT).
This satisfies:
e [p is an exact functor.
e [p has the left adjoint functor Lp. The functor Lp is exact.
e [p has the right adjoint functor Rp.

For the existence and explicit descriptions of adjoint functors Lp, Rp, see [4, 5.1].

For parabolic subgroups P C @), we also defines ’Hgi C Hp and jgi: Hgi — Hg and
jgi*: Hgi — Hg. This defines the parabolic induction Ig from the category of Hp-
modules to the category of Hg-modules.

2.7. Twist by nygwp

For a parabolic subgroup P, let wp be the longest element in Wy p. In particular, wg is
the longest element in Wy. Let P’ be a parabolic subgroup corresponding to —wg(Ap); in
other words, P’ = nyquwp POpn;éwP, where P°P is the opposite parabolic subgroup of P
with respect to the Levi part of P containing Z. Set n = nyqwp. Then the map P°P — P’
defined by p + npn~! is an isomorphism which preserves the data used to define the
pro-p-Iwahori Hecke algebras. Hence, T Tri;n,l gives an isomorphism Hp — Hp:.

This sends T7* to Tful)’;,l and EP  (w) to E(il

-1
oo (nwn~'), where v € Wy p.

,pwnvn*l
Let o be an H p-module. Then we define an H p/-module 1,40 via the pull-back of

. . /
the above isomorphism: (nycw,0)(TE ) = o (T, ). For an H pr-module o', we
PwgwpWlwgwp

define ng !, o' by (ngl, .o )(T) = o (T ).
NwgwpWNwgwp
2.8. The extension and the generalized Steinberg modules
Let P be the parabolic subgroup and o an H p-module. For a € A, let P, be a parabolic
subgroup corresponding to ApU{a}. Then we define A(o) C A by
A(o)={a e A[{Ap,a") =0, o(TY) =1 for any A € Wag p, (1) NA(1)}UAR.
Let P(c) be the parabolic subgroup corresponding to A(o).

Proposition 2.3 ([6, Theorem 3.6]). Let o be an Hp-module and @ a parabolic subgroup
between P and P(o). Denote the parabolic subgroup corresponding to Ag\ Ap by Ps.
Then there exists a unique Ho-module eq (o) acting on the same space as o such that

o co(o)(TS*)=0a(TE*) for any w e Wp(1).
o ¢co(0)(TS*) =1 for any w € Wag, p,(1).
Definition 2.4. We call eg(o) the extension of o to Hq.

A typical example of the extension is the trivial representation 1 = 15. This is a
one-dimensional H-module defined by 1(7,) = g, or equivalently 1(7;5) = 1. We have
A(lp)={aeA|(Ap,a¥) =0}UAp, and if @ is a parabolic subgroup between P and
P(1p), we have eg(1p) = 1¢.
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Let P(c) D Py D> Q1 D QD P. Then as in [3, 4.5], we have Ig(l’ (eg,(0)) C IS“ (eq(0)).
Define

St¢? (o) = Coker | €D 15 (eq, (o) = 15 (eq(0))
Q12Q

When Py = G, we write Stg(o) and call it generalized Steinberg modules.

2.9. Supersingular modules

In this subsection, we assume that C is a field of characteristic p. Let O be a
conjugacy class in W (1) which is contained in A(1). For a spherical orientation o, set
20 = ) _rco Fo(A). Then this does not depend on o and zp € Z, where Z is the center of
H[18, Theorem 5.1]. The length of A € O does not depend on A. We denote it by £(O).
For A € A(1) and w € W (1), we put w- A = wAw ™.

Definition 2.5. Let m be an H-module. We call 7 supersingular if there exists n € Z~g
such that mzf% = 0 for any O such that ¢(O) > 0.

Remark 2.6. Since mzp C 7 is a submodule, if 7 is simple, then 7 is supersingular if and
only if mzp =0 for any O such that £(O) > 0. Let A € A(1). Then ¢()) # 0 if and only if
(a,v(N)) #0 for some a € ¥ [4, Lemma 2.12]. Hence, a simple H-module 7 is supersingular
if and only if 7(zp(1).0) = 0 for any X such that (a,v())) # 0 for some a € X.

The simple supersingular H-modules are classified in [14, 18]. We recall their results.
Let W#f(1) be the inverse image of W,g in W (1).

Remark 2.7. When we do not assume that the data come from a group, we have no
Wag (1) but we have W*(1). Even though the data come from a group, Wag(1) is not
equal to W (1). We have Z, C W (1); however, Z,, ¢ Wag(1) in general. Since we will
not assume that the data come from a group, we do not use Wog (1) here.

Put Haf = @wewaff(l)CTw. Let x be a character of Z, and put Sag y = {5 € Sas |
x(cz) # 0}, where s € W(1) is a lift of s € Sag. Note that, if § is another lift, then 5" =t
for some t € Z,,. Hence, x(cs) = x(t)x(cs). Therefore, the condition does not depend on
a choice of a lift. Let J C Sag,y. Then the character Z=Z; , of HM is defined by

Erx(T) =x(t) (teZy),

X(cs) (5 € Satx \J) {x(az) (s¢J),

E“’*X(B):{o C sd S\ 10 (sed)

where 5 € W (1) is a lift of s and the last equality easily follows from the definition of
Satt,y- Let ©2(1)z be the stabilizer of Z and V a simple C[Q(1)=z]-module such that V|,
is a direct sum of y. Put Hz = H*C[Q(1)=]. This is a subalgebra of H. For X € Hf
and Y € C[Q(1)z], we define the action of XY on 2@ V by z®y +— X ®yY . Then this
defines a well-defined action of H=z on Z®@ V. Set 7y, ;v = (EQ V) @y H.
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Proposition 2.8 ([18, Theorem 1.6]). The module 7, ;v is simple, and it is supersin-
gular if and only if the groups generated by J and generated by S, \ J are both finite.
If C is an algebraically closed field, then any simple supersingular modules are given in
this way.

The construction of m, ;v is still valid even if we do not assume that the data come
from a group. In Section 4, we do not assume it, and we calculate the extension between
the modules constructed as above.

2.10. Simple modules
Definition 2.9. We consider a triple (P,0,Q) which satisfies the following:

e P is a parabolic subgroup of G.
e (o is a supersingular finite-dimensional H p-module.
e () is a parabolic subgroup contained in P(o).

Then we define an H-module I(P,0,Q) by
I(P,0,Q) = I (St5” (0)).

Theorem 2.10 ([3, Theorem 1.1]). Assume that C is an algebraically closed field of
characteristic p. The module I(P,0,Q) is simple, and any simple module has this form.
Moreover, (P,0,Q) is unique up to isomorphism.

3. Reduction to supersingular representations

In the rest of this paper, we assume that C is a field of characteristic p. Let
(P1,01,Q1),(P2,02,Q2) be triples as in Definition 2.9. We calculate the extension group

Ext%{(I(P1,01,Q1),I(P27U27Q2))-

3.1. Central character

We prove the following lemma.
Lemma 3.1. If Eth;H(I(Pl,O'l,Ql),I(PQ,O'Q,QQ)) #0 for some i € Z>q, then Py = Ps.

To prove this lemma, we calculate the action of the center Z on simple modules. To do
it, we need to calculate the action of Z on a parabolic induction.

Lemma 3.2. Let P be a parabolic subgroup, o a right Hp-module. For W (1)-orbit O in
A1), set Op ={A € O| A is P-negative}. Then we have the following:

(1) The subset Op C A(1) is Wp(1)-stable.

(2) Let Op =01 U---UO, be the decomposition into Wp(1)-orbits. The action of zo € Z
on Ip(c) is induced by the action of Y,25 ono.

Proof. Since ¥\ X} is stable under the action of Wy p, (1) follows from the definition
of P-negative.
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Let ¢ € Ip(c) = Hom, (H,0). Then for X € H, we have

Hpdp ™)
(p20)(X) = p(z0X) = p(Xz0)

since zp is in the center of H. Hence, by the definition of zp, we have

(o)) = S e(XEW) =S S w(XEON+ Y w(XEO)
A€O i A€O; A€O, not P-negative
We prove the vanishing of the second term.

Let A € O, which is not P-negative. Then there exists o € ©+\ X} such that {(a,v(\)) <
0. Let Ap be as in Proposition 2.2. Then (a,v(Ap)) > 0. Hence, v(A) and v(A5) does not
belongs to the same closed Weyl chamber. Therefore, we have E(A\)E(Ap) =0 in He by
[4, (2.1), Lemma 2.11]. Hence, by [4, Lemma 2.6],

(XE(\) =(XE\)EF(\p)EX(Ap) ™!
=o(XEW)jp" (EXAp))E"(Ap) ™"
=p(XENEMR)E"(A\p) "t =0.

If A € O;, then E(\) € Hp. Hence, we have E()\) = jp*(E¥()\)) by [4, Lemma 2.6].
Therefore,

Y P(XEMW)=9(X) Y a(BX(N) = p(X)o(=5,)-

A€0; A€O0;
We get the lemma. O

Lemma 3.3. Let (P,0,Q) be a triple as in Definition 2.9. Let R be a parabolic subgroup
and A= Ay as in Proposition 2.2. Then zp, # 0 on I(P,0,Q) if and only if P C R.

Proof. Set O = O,. Since A(1) C Wg(1) and X is in the center of Wg(1), A commutes
with A(1). Hence, O = {n,, -\ | w € Wy}.

We prove that Wp(1) acts transitively on Op. Let p € Op, and take w € Wy such
that p = n, - A. Take v € Wy p such that v(v(u)) is dominant with respect to 5. Since
vTH(EFT\2E5) =S+ \ 2} and p is P-negative, we have (v(v(p)), ) >0 for any a € £\ X5,
Hence, v(v(u)) is dominant. Now v(A) and v(v(u)) = vw(v(A)) is both dominant. Hence,
vw € Staby, (¥(A)) = Wy g. Since A is in the center of Wr(1), we have (nyn,) A=A
Hence, 1 =n, - \. Therefore, Wp(1) acts transitively on Op.

By the definition, I(P,0,Q) is a quotient of Ip(4) (IS(U)(eQ (0)))=Ig(eq(0)). Moreover,
by the definition of the extension, we have an embedding eg (o) — Ig(a). Hence, we have
Ig(eq(0)) = Iq(I€(0)) =Ip(0). Let x: Zp — C be a central character of 0. By the above
lemma and the fact that Op is a single Wp(1)-orbit, on Ip(0), zo, acts by x(z4,). Since
v(A) is dominant, A is P-negative. Hence, A € Op. By the definition of supersingular
representations with Remark 2.6, x(z5,,) = 0 if and only if (a,»())) # 0 for some o € )Ip
The condition on A = Ay tells that (o,/(\)) # 0 if and only if o € £+ \ $F. Therefore,
x(25,.) # 0 if and only if 55N (ST \XF) =0 which is equivalent to P C R. O

Proof of Lemma 3.1. Assume that P; # P,. Then we have P; ¢ P, or P; 7 P,. Assume
P1 ¢ Py, and take A = A, as in Proposition 2.2. Put O = {w-A|w € W(1)}. Then zp =0
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on I(Py,01,Q1) and zp # 0 on I(Ps,02,Q2). Hence, the vanishing follows from a standard
argument since zp € H is in the center. The case of Py % P; is proved by the same way. [

3.2. Reduction to generalized Steinberg modules

By Lemma 3.1, to calculate the extension between I(Py,01,Q1) and I(Ps,02,Q2), we may
assume P; = P». We prove the following proposition.

Proposition 3.4. The extension group Extéi(l(P,al,Ql),I(P,a,Qg)) 18 1somorphic to

i P(o1)NP(02) P(o1)NP(0o2)
EXt’Hp((,l)np((Q)( QlﬂlP(g2) 2 (01)7StQ2 ! 2 (02))

if Q2 C P(01) and A(o1) C Ag, UA(02). Otherwise, the extension group is zero.

Hence, for the calculation of the extension, it is sufficient to calculate the extensions
between generalized Steinberg modules. For an H-module 7, set 7* = Home (m,C). The
right H-module structure on 7* is given by (fX)(v) = f(v{(X)) for f € n*, v € and
X € H. Here, the anti-involution ¢: H — H is defined by ((T\) = Typy-1.

Lemma 3.5. We have Ext, (m1,75) ~ Ext}, (mo,7%). In particular, if 1 or my is finite-
dimensional, then Exty, (m1,m2) ~ Exty, (73,77).

Proof. We have the isomorphism for ¢ = 0 since both sides are equal to {f: m X 72 —
C| fx1X,x2) = f(x1,{(X)x2) (1 € 71,29 € T2, X € H)}. Hence, in particular, if 7 is
projective, then 7* is injective. Let --- — P, — Py — w2 — 0 be a projective resolution.
Then Ext}, (m2,7}) is a i-th cohomology of the complex Hom(P;,7§) =~ Hom(7y, P;"). Since
0 — 15 — Py — P{ — --- is an injective resolution of 73, this is Ext}, (71, m5).

If 7 is finite-dimensional, then my =~ (7)*. Hence, we have Extl (m,m2) ~
Ext%(m,(wg)*) ~ Exti (n5,7%). By the same argument, we have Extl (m,mo) =~
Exty, (m3,77) if my is finite-dimensional. O

Proposition 3.6. Let P be a parabolic subgroup, m an H-module and o an Hp-module.
(1) We have Ext}, (m,Ip(c)) ~ Ext},  (Lp(7),0).
(2) We have Extly(Ip(o),m*) =~ Extf:HP (o.Rp(n*)). In particular, if m is finite-

dimensional, then Extl, (Ip(o),m) = Exty, (0, Rp(7)).

Proof. The exactness of Ip and Lp implies (1).
Put P’ = nyguwp P°Pnygt,, . Define the functor 15, by

wGgwp
Ipi(0') = Homy, (H,0")

i)
for an ‘Hp-module o’. Then this has the left adjoint functor L', defined by L, (7) =
7T®(7_L— i )’Hp/. This is exact since Hp+ is a localization of Hp, by Proposition 2.2. Set
PI? Pl
01—, (TF) = (=1)!W)=tr(W)(T,) [4, 4.1]. Using [2, Proposition 4.2], for an H p-module
o, we have
Extl, (Ip(o),7*) =~ Ext}, (m,Ip(0)*)

>~ EXtEH ('/T, -[33/ (anwP szep))
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NEXth(anwPLP’( )07 _¢,)
NEXth(Jl LpsT ’UJG’UJP iD’(Tr)*)
NEXt’HP(U7( ’wgprP'( ))Z—ép)'
Put i = 0. Then we get (n,} P (T))i_e, = Rp(m*) by Homy(Ip(o),m*) =~

wGwp

Homy, (0, Rp(7*)). Hence, we get (2). |
If m is finite-dimensional, then m = (7*)*. Hence, we get Exty (Ip(0),7m) =~
Exty,, (0,Rp(m)) applying (3) to 7*. -

Proof of Proposition 3.4. Since I(P,05,Q2) is finite-dimensional, we have

EXté_[(I(P,Ul,Ql),I(P,UQ,QQ)) :EXté{m (Sth (Jl) RP(J1)( (P,02,Q2)))-

We have Rp(q,)(I(P,02,Q2)) =01if Q2 ¢ P(01) by [4, Theorem 5.20]. If Q2 C P(0y), then
Rpo(I(P,02,Q2)) = Ip(o)(P,0,Q2). Hence, the extension group is isomorphic to

EXté—tp(al (Sth (01) Ip(s))(P,02,Q2))

7 P(o P(oy
= Exty, (Sto " (01, 5o pion) (Stes (02)))
_ i P(o1) 1) P(o1)NP(02)
_EXtHP(al)np(a2)(LP(J;)OP(m)(Sth (Jl))’Sth ' ’ (02))

We have L) b (St6.7(61)) = 0 if A(01) # A(Q1) UAp(oy)np(es) 08 P & Plon) N
P(o3) by [4, Proposition 5.10, Proposition 5.18]. If it is not zero, then the extension group
is isomorphic to

i P(o1)NP(02) P(o1)NP(02)
EXtHP(Ul)mP(UQ)( QlﬁlP(gz) 2 (01)?StQ2 ! 2 (02))

This holds if Q2 C P(01), A(o1) = A(Q1) UAP(Ul)ﬁP(az) and P C P(o1)NP(o2), and
otherwise the extension group is zero. Note that we always have P C P(o1) N P(02) since
both P(c1) and P(o3) contain P. Since Q1 C P(01), A(Q1)UAp(s,)npP(es) = (A1) N
A(Q1))U(A(o1)NA(o2)) = A(o1) N (Ag, UA(02)). (Recall that P(o7) is the parabolic
subgroup corresponding to A(o1).) Hence, we have A(o1) = A(Q1)UA(P(o1)NP(o9)) if
and only if A(o1) C Ag, UA(o3). We get the proposition. O

Therefore, to calculate the extension groups, we may assume P(o1) = P(02) =G.

3.3. Extensions between generalized Steinberg modules

We assume that P(o1) = P(02) = G, and we continue the calculation of the extension
groups.

Lemma 3.7. Let Q11,Q12,Q2 be parabolic subgroups and o € Ag,, such that Ag,, =
Ag,, \{a}. Then we have

Exty; ! (St (01),5t0,(02)) (@ € Ag,),

Bt ) Stalon) = {Extéﬂsm(an,sm (02) (a¢Bq.).
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Proof. Let P; be a parabolic subgroup corresponding to A\ {«}. First, we prove that
there exists an exact sequence

0= Stq,, (1) = Ip, (Stg,, (01)) = Sty (01) = 0. (3.1)
We start with the following exact sequence.

0— Z ISI(eQ(Ul)) %Igil(eQu(al)) —>Stglu(01) — 0,
P1DQ2Q11
Apply Ip, to this exact sequence. Then we have
0= > Ioleq(on) = Igu (e (01) = Ir, (Stg, (01)) = 0.
P1DQ2Q1

Hence, we get the following commutative diagram with exact columns:

0 0
ZPQQQQM Ig(eq(o1)) — ZQ;QM Ig(eq(0))

|

IQu( ( )) IQll(e 11(0—1))

— O —

Qu
|
Ip, (St5 0., (01)) ————— Stg,, (01)
|
0

O

Hence, Ip, (Stgl11 (01)) = Stg,, (01) is surjective, and the kernel is isomorphic to

Y Igleqe) /> Igleglon))

Q2Q11 P1DQ2Q1n

by the snake lemma.
We prove:

(1) 1015(€Q15(01)) + 3 p 5020:, Loleq(a1)) =300, loleq(a)).
(2) IQ12 (tez (01)) N ZPlDQQQu IQ(eQ(Ul)) = ZQQQR IQ(eQ (U))

We prove (1). Since Q12 2 Q11, Ig,,(€g,,(01)) is contained in the right-hand side.
Obviously, ZPQQ;QH Ig(eg(o1)) is also contained in the right-hand side. Hence,
10,5 (eq12(01)) + 2p 50201, Lo(eq(01)) C Ygoq,, Ioleq(a)). Take Q5Qu1, and we
prove that IQ(GQ(O’l)) C IQ12 (6Q12 (0'1)) +ZP13QQQ11 IQ(@Q(O'l)). If P D@, then it is
obvious. We assume that P; 2 Q. Since Ap, = A\ {a}, this is equivalent to o € Ag.
Hence, Ag D Ag,, U{a} = Ag,,. Therefore, we have Q D Q12. Hence, Ig(eg(o1)) C

IQ12 (€Q12 (01))'
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We prove (2). By [2, Lemma 3.10], the left-hand side is
Z I<Q7Q12>(6(Q1Q12)(01))7

P1DQ2Q11

where (Q,Q12) is the subgroup generated by @ and Q2. We prove

{Q,Q12) PO Q2Q1}={Q Q2 Qu2}.

If @ satisfies Py D Q 2 Q11, then there exists § € Ag\Ag,,. We have f € Ag C Ap, =
A\ {a}. Therefore, we have § # . Hence, 8 ¢ Ag,, U{a} = Ag,,. On the other hand,
B e Ay CAQ Q) Namely, we have 3 € A 0.,y \ Ag,,. Obviously, (Q,Q12) D Q2.
Therefore, we get (Q,Q12) 2 Q12.

On the other hand, assume that @ 2 Q2. Then o € Ag since o € Ag,,. Let @ be
the parabolic subgroup corresponding to Ag \ {a}. Then we have Ag C A\{a} =Ap,
and AQ/ = AQ \ {a} 2 Ale \{Oé} = AQll' Hence, P; D Q/ 2 @11- We have A<Q/}Q12> =
AQ/ UAQ12 = (AQ\{Q}) UAQH U{O&} = AQ UAQH U{Oé}. This is AQ since AQ D) AQ12 =
Ag,, U{a}. Hence, Q = (Q’,Q12). We get the existence of the exact sequence (3.1).

Assume that o € Ag,. Then aw € Ag, and o ¢ Ag,np,. Hence, Ag, # Ag,np, UAP.
Therefore, Rp, (Stg,(02)) =0 by [4, Proposition 5.11]. We have an exact sequence

EXt%—l (IP1 (Stglu (01))’StQ2 (02)) - EXté’-L(StQ12 (01)’StQ2 (02))
— Exti* (Stg,, (01),Stq, (02)) — Exti ! (Ip, (Stgl11 (01)),Stg, (02)).
Since Rp, (Stg,(02)) =0, for any j, we have
Eth—t (IP1 (StQm (Ul))’StQ2 (02)) = Eth-[ (StQu (Jl)vRP1 (StQQ (02))) =0.
Therefore, we get
EXt%—L (Sthz (01 )7 Sth (02)) = EXt;-—z_l (Sth (01 )7 Sth (02))'

Next assume that o ¢ Ag,. Let Qf; (resp. Q5,Q5) be the parabolic subgroup
corresponding to (A\ Ag,,) UAp (resp. (A\Ag,)UAp,(A\Ag,)UAp). Let v =
tc: H — H be the involution defined by «(T},) = (—1)“™ T, and set 7* = mo. for an
‘H-module 7. Then we have

EXt?H(Sth (01)5StQ2 (02)) = EXt;--L((StQu (01))L7 (StQ2 (02))L)
=~ Exty, (Stas, (0170, ) Stag (057 p,))

by [2, Theorem 3.6]. Now we have o € Ags. Applying the lemma (where Q11 = Qf, and
Q12 = Q5;), we have

Bxty, (Stoy, (01—, ):StQs (057 0,.)) = Bxtyy * (Stag, (017, ). Stas (057_4,.)
~ Bxtyy (St (01))'(8tQ, (02))")
~ Extl; ' (Stg,, (01),Stg, (02)).
We get the lemma. O
For sets X,Y, let X AY = (X \Y)U (Y \ X) be the symmetric difference.
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Theorem 3.8. We have
i i—#(Ag, AA
Exctd, (Stg, (01),Stq, (02)) ~ Extl, 20489 (¢ (04) e (02)).
Proof. By applying Lemma 3.7 several times, we have

EXt’iH (StQ1 (01 )7 Sth (02)) = EXté-zrl (eG (Ul )7 Sth (02))a

where 7 = #{a € A\ Ag, | v € Ag,} —#{a € A\ Ag, | a ¢ Ag,}. Set Q) =

op, —1 -
Nwewg, @2 Mugweg, - Then by Lemma 3.5, we get

Exts; " (ec(01),Stq, (02)) = Extiyy ™ ((Stq. (02))" e (1))
~ Exty, " (StQ/z (03),ec(o7)).
Again using Lemma 3.7, we have
Exté[” (StQ/2 (03),ec(o7)) ~ Exté[”f’"2 (eq(03),ec(o7)),

where ry = #(A\ Ag,) = #(A\ Ag,). Applying Lemma 3.5 again, we get

Extl, """ (eq(03)ec(07)) ~ Exth, " " (eq(a1),ec(02)).
Since ri +ry = #(Ag, AAg,), we get the lemma. O

Recall that the trivial module 1 is defined by 1(7T,,) = ¢, We denote the restriction of
1 to Hag by Loy,

Corollary 3.9. We have EXt%{aff(].Haf”]_Haff) =0 fori>0.

Proof. Let H,gz be the quotient of H.g by the ideal generated by {T; — 1|t € Z,N
Wag(1)}. Then this is the Hecke algebra attached to the Coxeter system (Weg,Sas). Let
72 (resp. 1) be an an Hag-module (resp. Hag-module). Then we have Homyy,,, (71,7m2) =
Homyz (ﬁl,@z”). In particular, w9 +— 7r2Z" sends injective H-modules to injective Hg-
modules. Since the functor 7y — 72% is exact, we have Ext%ia (T, mo) ~ Ext%aff (T1,m2%).

Therefore, we have Exté_[aff(lya“, 1o,) >~ EXtiﬂa“ (17,15, ). Consider the root system
which defines (Wag,Sar), and let H be the split simply-connected semisimple group with
this root system. Then the affine Hecke algebra attached to H is Hag. Let H’ be the pro-
p-Iwahori Hecke algebra for H. Then H' = H by [5, I1.3.Proposition|; hence, H. 4 = H'.
Therefore, the above argument implies that Ext%,(lw,lw) ~ Ext%aff(lﬁa“,lga“).
Therefore, it is sufficient to prove Exty,(1g,1¢) =0 for ¢ > 0 assuming G is a split,
simply connected semisimple group. By [15, Proposition 6.20], the projective dimension of
1 is equal to the semisimple rank of G, namely #A. Therefore, Extg#A(lg,StB(lg)) =

0 for i > 0. The left-hand side is Ext,(1g,1¢) by Theorem 3.8. O
3.4. Extension between extensions

Let P be a parabolic subgroup and o an H p-module which has the extension eg (o) to H.
In particular, Ap and A\ Ap are orthogonal to each other. Let P; be a parabolic subgroup
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corresponding to A\ Ap. Let J C H be an ideal generated by {T;; —1|w € Wag, p,(1)}.
Then eg(o)(J) = 0. Hence, for any module m of H, we have

Homy, (e(0),m) = Homyy s (e(0),{v € 7 |vJ = 0}).

Note that T£2 — T, defines the injection Ha.g, p, — H since the restriction of ¢ on
Waa p,(1) is £p,. Since any generator of J is in Hag, p,, we have {v e |vJ =0} ={v €
7 | v(JNHag, p,) = 0}. Since the trivial representation 1y of Hag, p, is isomorphic to
Hatt, P,/ (J N Hast, p,), We get

aff, Py

{venm|v(JNHag p,) =0} = Homuy p) (Lo py»7)-
Hence, we get
Homy (eg(0),m) = Homy/ s(ec(o), Homyy, g p, (lq{afﬂp2 ,7)).
This isomorphism can be generalized as
Homs (71,7) = Homyy /7 (71, Homay,,. Py (L, Py ,7))

for any H/J-module 7. In particular, m — Homyy,, p, (134, p,,7) from the category of
‘H-modules to the category of H/J-modules preserves injective modules. Hence, we have
a spectral sequence

Extiy/ s (ec(0), Bxtyy, . (L p,om)) = Exty)? (e(o),m).
Now let 01,02 be Hp-modules such that both have the extensions eg(o1),eq(02) to H.
Since eG(02)|#,y p, is a direct sum of the trivial representations, we have
EXt‘%‘lafﬂpz (1Haff,P2 76(02)) =0
for j > 0 by Corollary 3.9. Hence,
Extl, (eq(o1),eq(02)) = EXt;/J(ec(Ul),GG(Uz)).
Lemma 3.10 ([6, Proposition 3.5]). Let I be the ideal of Hp generated by {Tf —1| X €
A1) NWag, p,(1)}. Then we have H/J ~Hp/I.
Therefore, we get
Exté_t(eg(al),eg(og)) ~ Exté_tp/l(ohag).

Proposition 3.11. Set W/ = Wag, p, Sig = Sasr,p, W' = Wp/(ANWag, p,), @ =
Qp/(ANWag. p,), W(1) =Wp((1)/(AL)NWag p, (1)), ZI. = Z,./(Z,; "\ Wag, p,(1)). Then
(Wi Shg, Y W/ W' (1),Z),) satisfies the condition of subsection 2.1, and the attached
algebra is H/I. Moreover, ' is commutative.

Proof. Since A = ApUAp, is the orthogonal decomposition, we have Wog = Wag p X
Wag p, and Sag = Sag, p U Sag p,. The pair (W', Sig) = (Wag, p,Sas,p) is a Coxeter
system, and €2p acts on it. Since Wag p, commutes with Wag p, this gives the action
of Q" on (W/4,S.4). We have W/ C Wp, and since Wag p N Wag,p, is trivial, we
have the embedding W/; C W’'. We also have Qp C W’. Since Wp = Wag pQp, we
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have W/ = W/ 3. Since Wag p N Qp = {1}, we have W)z N = {1} in W'. Hence,
W' =W/s x . Since Z, is finite and commutative, Z. is also a finite commutative
group. The existence of the exact sequence

1= Z W 1) -W =1

is obvious. Note that the length function ¢': W/ (1) — Z> is given by ¢p: Wp(1) = Z>
since S/g = Sag, p and ' is the image of Qp.

We put ¢/, = g5 for s € Suq, p. (Note that g, = g5 p since A = Ap UAp, is an orthogonal
decomposition.) For s € Ref(W’(1)), take its lift § € Ref(Wp(1)) and let ¢ be the image
of ¢z in C[Z]]. We prove that this is well-defined. Let §’ be another lift, and take A €
A(1) N Wag p,(1) such that s" = $\. The image of §in W is in Ref(Wp) C Wp g since
Sp.at C Wpag and Wp .g is normal. (Recall that a reflection is an element which is
conjugate to a simple reflection.) Let A be the image of A in A. Since 3,5 € Wp (1),
we have \ € ANWag p, "\ Wag,p = {1}. Hence, A € Z,. Since A\ € Wyg p,(1), we have
X € Z,,NWag, p,(1). Hence, the image of ¢z = cz\ = ¢z is the same as that of ¢z in C[Z]].

We get the parameter (¢',c') and let %' = €D,y 1) Ty be the attached algebra.
Consider the linear map ®: Hp — H' defined by T +— TL, where w € Wp(1) and
w e W'(1) is the image of w.

First, we prove that the map ® preserves the relations. Let s € Wp(1) be a lift of an
affine simple reflection in S, p. Then we have ()2 = qSTslz +¢sTF. Let 5 be the image
of s in W'(1). Then we have (1%)? = ¢&T%, + c5T%. The definition of (¢',¢') says ¢& = ¢,
and ®(cs) = . Hence, ® preserves the quadratic relations. The compatibility between
£p and ¢ implies that ® preserves the braid relations.

Obviously, @ is surjective. We prove that Ker ® = I. Clearly, we have I C Ker®. Let
> wewp (1) Cwlw € Ker®, where ¢, € C. Fix a section z of Wp(1) — W’(1). Then we have

ZwGWp(l) coTy = ZwEW’(l) ZAeA(l)nWaff,qu)Cr(w)ATf(w)x Hence,

0=0| > li]|= > > Cotwir | Th-

wEWp (1) weW’(1) \NEA(D)NWage, p, (1)
Therefore, for each w € W'(1), we have ZAeA(l)mWaff 1y (1) Co(w)r = 0- Hence,

Z Cuw qu

weWp(1)

= > Y. cawnTiwn
weW’ (1) NeA(1)NWagt, p, (1)

Z Z Cz(w))\TzP(w))\ - Z Cr(w)ATzFEw)

weW’ (1) \AeA(1)NWagr, p, (1) AEA(L)NWagt, py (1)

Z Z Cz(w))\Tf(w) (T){D — 1) el

weW’(1) \AeA(L)NWagt, py (1)

Finally, € is commutative since Qp is commutative. O
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Remark 3.12. The data do not come from a reductive group in general.

3.5. Example

Let G = PGLy. We have A(1) ~ F* /(14 (w)) =~ Z x x*. Consider G = SLy. Then @ is

the image of G — G [5, 11.4 Proposition]. By this description, we have A(1)NWag(1) =

{22 | X € A(1)}. Therefore, with the notation in Proposition 3.11, we have W/, = {1},
Te=0, W (1) =A0)/{N | e A1)}, Z=Z,/{t* |t € Z,;}. We have Hp /I = C[W'(1)].
Consider the trivial module 1¢. Then we have 1 = e (15), and we have

Exty (1, 1¢) ~ Exty,, /1(1p,15) ~ Extopy: oy (1s,1) = H' (W'(1),0).

Here, C is the trivial W’(1)-module. Since the group W'(1) is a 2-group, this cohomology
is zero if the characteristic of C' is not 2. However, if the characteristic of C is 2, since
W'(1) ~Z/2Z (p=2) or (Z/22)%? (p # 2), H(W'(1),C) # 0 if i is even. Therefore,
we have infinitely many i with Ext}, (15,1¢) # 0. This recovers Koziol’s example [12,
Example 6.2].

3.6. Summary

Now we get a reduction. The Ext! between simple modules is equal to Ext!™" between
supersingular simple modules for some r > 0 or zero. In particular, if r > 2, then Ext!
between simple modules is zero. If = 1, then Ext'™" = Hom, so it is zero or one-
dimensional. If r = 0, we have to calculate Ext' between supersingular simple modules.
Therefore, the only remaining task is to calculate Ext' between supersingular simple
modules.

4. Ext! between supersingular modules

In this section, we fix data (Wag,Sam, W, W(1),Z,;) and let H be the algebra attached
to this data. We do not assume that these data come from a group. We also assume:

e our parameter ¢, is zero.
e #7,. is prime to p.
As in subsection 2.9, let W2 (1) be the inverse image of W,g in W (1), and put H*¥ =
@wEWaff(l) CTw
For a character x of Z, and w € W, we define (wy)(t) = x(@w~tw) where w € W(1)
is a lift of W. Since Z,; is commutative, this does not depend on a lift w and defines a
character wy of Z,. For a character = of H* and w € Q(1), we write Zw for the character
T+ E(T 1) for w € W2 (1). Since Zw only depends on the image @ of w in €, we
also write =w.
Note that, since s-cz = ¢z for s € S,g with a lift s by the conditions of the parameter
¢, we have (sx)(cz) = x(cz).

4.1. Ext! for H?
Let x,x’ be characters of Z,, and J C Sagt,y,J’ C Sagt, subsets. Then we have characters

= =/

E=Ej,, & =5 of H*. We calculate Ext;,. (Z,Z').
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To express the space of extensions, we need some notation. For each s € S,g, let Cj
be the set of functions a on {s € W (1) | s— s € W} such that a(t3) = x'(t)a(s), a(st) =
a(3)x(t) for any t € Z,,. Then Cs # 0 if and only if ¥’ = sy and if x’ = sx then dime Cs = 1.

Now we define some subsets of S,g. First, consider the sets

) ={s € Sarr | E(T: )=~( )—0}
Ag 575’) {s € Sagt | E(T%) #
) ={s € Sanr | E(T5) =
) E(T3)

]
/\
I
<
(en]
-

where s is a lift of s. We define
SQ('—‘,'—‘ ) = AQ('—‘P—‘ )UA3(:7:/>
Sl(:7:/) {3 S 141(“7H )\Saff,x ‘ SX = X/7 (551) 7é 1 fOI‘ any si S SQ(“?“ )}

If s € Sair,, and a € C, then a(3)x(cz)~! € C does not depend on a lift 5 of 5. We
denote it by ax(cs)~!. We also have that if s € Sag,,, then a(5)x’(cz) ™! does not depend
on a lift 5. We denote it by ax'(cs)™*. If a # 0, then x’ = sy. Hence, if s € Sug,, then
S € Saft, and ax(cs) ™' =ax'(cs) 7t

For the Hecke algebra attached to a finite Coxeter system, the following proposition is
[8, Theorem 5.1], and we use a similar proof.

Proposition 4.1. Consider the subspace E3(Z,Z') of @,cg, (=2 Cs consisting (as) such
that

o Ifsy,s0€ Ay(Z,Z), then ag, x(cs,) ! = as,x(cs,) L
o Ifsy,sy€ A3(E,Z), then as, X (cs,) ™t = as, X (Csy) 71
o If s1 € A2(EZ), s2 € A3(E,Z) and (s152)> = 1, then as x(cs;) ! + as, X

(052)—1 =0,

and put E1(ZE) = @,cs, =2 Cos BEE) = Bi(EE) @ E2(S). For (a,) € BEE),
consider the linear map H — Ms(C) defined by

o () =)

where as =0 if s ¢ S1(5,2 )USQ(:,:’) Then this gives an extension of = by =

- =/
gives a surjective map E(: ") — Extyn (5,Z'). The kernel is

, and it

aSlX(CSl)7 Jrassz/(cw)il =0
(as) € E(E,E/) (s1 € Ax(E,2),80 € A3(E,Z)) ». (4.1)
as; =0 (s€51(5,2))

Remark 4.2. Let V3 be a subspace of @ .,z =)Cs consisting (as) such that
as, x(cs,) 7t = as,x(cs,) ™t for any sq,82 € A2(Z,Z). Then dimVa <1 and Vi # 0 if and
only if Cs # 0 for any s € A3(Z,Z'), namely sy = X’ for any s € A3(Z,2'). Define V3 by
the similar way. Then dim V3 <1 and V5 # 0 if and only if sy = x’ for any s € A3(E,Z'). If
there is no s; € A2(Z,Z') and sp € A3(Z,Z') such that (s152)% =1, then Ey(5,Z') = Vo d V5.
Otherwise, dim E5(Z,E') = max{0, dim V2 + dim V5 — 1}.

https://doi.org/10.1017/51474748022000202 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748022000202

Extension Between Simple Modules of Pro-p-Iwahori Hecke Algebras 2793

Proof. Let M be an extension of Z by Z'. Since #Z,, is prime to p, the representation of Z,
over C' is completely reducible. Hence, we can take a basis e,eq such that Tie; = x(¢)e;
and Tieo = X'(t)ea. With this basis, the action of Ty where 5 € S,g(1) with the image

s € S, is described as
o= (515 _0 ).
as(s) E'(T5)

for some a;(5) € C. The action of T} where t € Z,; is given by

x@) 0
0 xX(t).
Since T;T5 = Tz, we have

(8 )8 =)= (0 =)

Hence, a4(t3) = x'(t)as(3). Similarly, we have as(5t) = as(3)x(t). Hence, a, € Cs.
Now we check the conditions that the map defines an action of H*f. Since we have

(H(Tg) 0 )2 _ ( E(T5) 0 )
03 Z(T5)) T \e@ET)+E (1) =(T)2)
this satisfies the quadratic relation T 52 = Tscz if and only if

as(8)(E(Ts) + E(T5)) = as(5)x(cs)- (4.2)

If s € A1(E,Z), then as(5) =0 or x(cz) =0, namely a; =0 or s & Sag, -

If s € A3(E,E), then as =0 or Z(T) = x(cz). Since Z(Ts) # 0, we always have E(Tz) =
x(cz). Hence, equation (4.2) is always satisfied.

If s € A3(Z2,Z'), then as =0 or Z/'(T%) = x(cz). Note that if as # 0, then sy = x’; hence,
Saft,y = Saft,y and x(cz) = x’(¢z). Therefore, under as # 0, we have Z'(T5) = x(c5) if and
only if Z'(T%) = x’(cz). This always hold since E'(T%) # 0. Hence, equation (4.2) is always
satisfied.

If s € A4(E,Z’), then we have =(T%) = x(cz). Hence, we have a4(5)Z'(T5) = 0. Therefore,
we have a5 =0 since ='(T5) # 0.

Consequently, the quadratic relation holds if and only if as =0 or s € (A1 (E,Z') \ Sag,)U
As(E,Z)UA3(E,E). The action of T is given by one of the following matrix:

(O 009 000 )0 L) a

Here, each x(cz) and x/(cz) is not zero, and in the first matrix, we assume that s ¢ Sag
if as #0.

Now we check the braid relations. Let s1,80 € Sag and 51,85 their lifts. We consider a
braid relation syss-+- = sgs71 -+ -. It is easy to see that the action satisfies the braid relation
for some lifts 51,§2 if and only if it is satisfied for any lifts s1,55. Take s7,52 such that
5182+ =38251 ---. It is easy to see that if s; € A4(Z,Z) or 55 € A4(Z,Z'), then the braid

- =/ = =/

relations hold automatlcally So we assume that s1,s2 € A1(E,2')UA2(E,Z2") U A3(E,Z').
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Assume that s; € 41(Z,Z). We have

<as ?’51) 8) (ffj?z)) E'(2’§2)> - <as1(§1;) (Ts,) 8)’

(ii?gz)) =(T5,) (asl?gl) 8) (iﬁz)) 5/((%;2) :(E/(TEQ)E(;%)GSI(%) 8)’

(Ci(j?z)) 5’(%2)) (asl?%) 8) <i(§?2)) 5’(2“:52))

Hence, the braid relation is satisfied if and only if

as, =0

or Z(T5,) = 2'(T%,) and the order of s1s2 is 2
or 2(T5,)=' (Ts,) = 0 and the order of s1s2 is 3
or the order of s;s, is greater than 3.

If so € A;(E,Z'), then the condition always holds. If sy € A3(Z,E") U A3(E,Z'), then the
condition holds if and only if as, = 0 or the order of s1s5 is not 2, namely (s152)? # 1.
Replacing s; with sq, if 55 € A1(E,Z'), we have the similar condition.

Assume that s1,52 € A3(E,Z'). We have

(X(Cgl) 0) (X(sz) 0) _ (X(%)X(Cz&z) 0) _ <X(C§1) 0> (c5,)

sy (gl) 0 a52(§2) 0) Qs (gl)X(C§2) 0) Qs (gl) 0 X

By this calculation, the braid relation is satisfied if and only if as, (51)x(cs,) - =
as,(82)x(cz,)---. By [20, Proposition 4.13 (6)], we have cz ¢z, -+ = ¢5,¢5 -+ Hence,
the braid relation is satisfied if and only if as, (51)x(cs,) ™! = as,(52)x(cs,) ™", namely
as, x(cs,) 7t = as,x(cs,) ™. By a similar calculation, if s1,s5 € A3(Z,Z’), then the braid
relation is satisfied if and only if as, x'(cs,) ™! = as, X' (cs,) 7L

Finally, we assume that s; € A3(Z,2') and sq € A3(E,E"). We have

<axsfc<?1)> 8) (?w x'(ggg) N (8 8)’
((()~) X/(?:gg) (X((~)) 8>:<a52<52>x<cg1>faﬁ(a)x’(cgz) 8)’
(?w X&)) (X(t)) 8) <(<)~> x'<2g2>> B (8 8)'

Hence, the braid relation is satisfied if and only if

o a,,(S2)x(cz,)+as, (51)X (cz,) = 0 and the order of s1s9 is 2.
e the order of s;s, is greater than 2.
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We notice that as,(32)x(cz,) + as,(51)X'(cz,) = 0 if and only if agx(cs,)™t +
as,X'(cs,) 1 =0.
We get the following table which shows the condition for the braid relation:

§ Ay Az As Ay
52
Ay always as, =0 or (s152)? # 1 always
-1 aSlX/(Csl)71+
sy X\C _
Ay :SIa,(XS(lc), )1 as,x(cs,) =0 | always
Gy =0 o X(Cos or (s152)° £1
2
or (s152)° # 1 | g, y(cs,) o+ tax(ea) )
A / —1 — 0 SlX CSl 1
3 sy X' (Csy) (et | A
r (s182)% #1 2 X
Ay always always always always

Now we assume that (as) € @se St Cy defines an action of H. First, recall that Cs #0
if and only if sy = x’. Hence, as # 0 implies sy = x’. Since the quadratic relations hold,
if as #0, then s € (A1(5,E) \ Sast,y) US2(E,E'). If s € A1(E,Z')\ Sar,, and (ss1)? =1
for some s; € S5(=Z,Z'), then the table says that as = 0. Therefore, if as # 0, then s €
S1(E,2")US2(E,Z). Hence, again by the table, (as) belongs to E(E,Z').

Conversely, if (as) € E(E,Z'), then as # 0 implies s € 51(5,E")US2(E,Z') C (41(E,E")\
Satt,x) US2(E,E2"). Hence, each T satisfies the quadratic relation. Let s1,59 € Sag. If 51 €
A1(E,Z) and s € A3(Z,E")UA3(Z,Z'), then the definition of S1(Z,Z’) says that (s152)% #
1 or as; =0. Then by the table, the braid relation for s;,ss holds. For other cases, the
condition on F3(Z,Z’) and the table imply that the braid relation holds too.

Therefore, the map E(Z,Z) — Extﬂm(:,:’ ) is well-defined and surjective.

Assume that the extension given by (as) splits, namely each matrix in equation (4.3)
is simultaneous diagonalizable. If s € A;(E,Z’), then the matrix corresponding to s
is diagonalizable if and only if as = 0. Let si,s2 € A2(Z,Z’). Then by ag, x(cs,) ™! =
as,X(cs,) ™1, the matrices corresponding to si,s2 commute with each other. Hence, these
matrices are simultaneous diagonalizable. Similarly, matrices corresponding to A3(Z,Z’)
are simultaneous diagonalizable.

If 51 € A3(E,Z') and s2 € A3(E,Z'), then the corresponding matrices are

(120 0) () i)

and these commute with each other if and only if as, x(cs,) ™' + as, x(cs,) ~* = 0. Hence,
the kernel is equation (4.1). O

Remark 4.3. Let w € Q(1)zNQ(1)z/. Then w acts on Extyux(Z,Z'), and by this action,
Ext},u (2,2') is a right Q(1)= NQ(1)z/-module. We also have the action of w on E(Z,Z’)
as follows: Let s € Sag, and put s1 = w ™ tsw € Sag. Then a — (31 — a(ws;w™1)) gives an
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isomorphism Cs ~ Cs,. We denote this map by a — a-w. Then the action is given by
(as) + (ay-14,-w). This action commutes with the action of w on Ext; . (Z,Z’).

4.2. Semidirect product

The argument in this subsection is general. Let A be a C-algebra and I' a group acting
on A. We assume that a finite commutative normal subgroup IV C I" and an embedding
C[I""] — A are given. Here, we assume that for v/ € I, the action of 7' on A as an element
in I is given by a— ~'a(y/)~!. We put B = C[['] ®cr A and define a multiplication by
(11 ®a1)(2®az) =717 (72_1 -aq)as for ay,as € A and 1,72 € T'. Of course, the example
in our mind is A =H* I'=0Q(1) and I = Z,.. We have B =H.

Let Mj,M5 be right B-modules. Then Homa (M7, M3) has the structure of a I'-
module defined by (fv)(m) = f(m~y~!)y. This action factors through I' — I'/T", and
we have Homp(Mq,Ms) = HOmA(Ml,MQ)F/F/. Let N be a I'/T'-module and ¢ €
Homp p (N, Hom4 (M1, Ms)). Set f: N®M; — My by f(n@m) = ¢(n)(m) for n € N
and m € M;. Then for v € T, we have f(ny®@m~y) = p(ny)(my) =¢(n)(m)y = f(n@m)y.
Namely, f is I'-equivariant. We define an action of a € A on N ® M; by (n®@m)a=n®ma.
Then it coincides with the action of I on C[I], and it gives an action of B. This
correspondence gives an isomorphism

Homp p (N, Hom 4 (M1, Ms)) ~ Homp (N ® My, M3).

In particular, if M5 is an injective B-module, then Hom 4 (M, M>) is an injective I'/T"-
module. Therefore, from Hompg (M7, M) =Hom 4 (M17M2)F/F/, we get a spectral sequence

EY = H(T /T, Ext’, (My, My)) = Ext'7 (My, My).
In particular, we have an exact sequence
0 — H'(T/T’, Hom (M1, Ms)) — Extl (M, My) — Ext!y (My, M)/ (4.4)

Moreover, we assume the following situation. Let I'y be a finite index subgroup of T’
which contains I, and put By = A®¢(r/ C[I'1]. Then this is a subalgebra of B, and B is
a free left Bi-module with a basis given by a complete representative of I'1\I'. Assume
that M; has a form L; ®g, B for some Bj-module L;. We have M; = Gawel“l\l“ Li®7.
Since B is flat over B, we have

Extp (M, Ms) ~ Extp, (L1, Mo).

We have a Bi-module embedding Ly < Mj. This is in particular an A-homomorphism,
and we get

Ext’y (M, M) — Ext} (L1, M,).
Since Ly < M, is a Bi-homomorphism, this is a I';-homomorphism. Hence, this induces

Ext’y (M, Ms) — Indp, (Ext’y (L1, Ms)).
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The decomposition M; = ®’Y€F1\F Ly ®~y respects the A-action. Hence,
Ext’y (M, Ms) = @ Ext’y (L ®7,My) = QB Ext’y (L1, M,)y.
’YGFl\F ’YEFl\F
Therefore, the above homomorphism is an isomorphism
Ext’y (M, Ms) ~ Indf, (Ext’y (L1, Ms)).
This implies
HY(T/T', Hom 4 (My, M>)) ~ H'(T'y /T, Hom o (L1, Ms)),
Exty (My, My)™/" ~ Ext! (L1, My) /T

and a commutative diagram

0 — HY(T/T”, Hom 4 (My,Ms)) — Exth(My, M) — BExtl (M, My)'/T
1§ 14 14

0 — H'(['y/I',Homa(L1,Ms)) — Extl (L1,Ma) — Extly (L1, Mp)"/T.

We also assume that there exists a finite index subgroup I's of I' which contains
I and My = Ly ®p, B, where By = A®cqr) C[I'2). Let {v1,...,7} be a set of
complete representatives of I's\I'/T';. Then the decomposition My = ED,YGFQ\F Lo®~y=
@i @VE(Flﬂvlezvi)\F1 L2 @iy gives

M2|Bl = @Lf% ®Blﬂ7i—132% By,
i

where Ly7y; is a 'yi_lBg%—module defined by: Ly7y; = Lo as a vector space and the action
is given by I(v; 'by;) =1-b for I € Ly and b € By, here - is the original action of b € By on
Ls. From this isomorphism, we get

H'(Ty /T, Ext!) (L1, M) ~ @ H'((T1 ;' Tovi) /T, Extdy (L1, Lovi))

and

EXt Ll,MQ @EXtB ﬁ’y_lB 273 (Ll,LQ"}/i)

which is compatible with the exact sequence in equation (4.4).

Set A=H T =0(1),I"=2Z,, 1 =Q(1)z and 'y = Q(1)=. Then we get the following
lemma. Recall that € is assumed to be commutative. For a character = of H, we defined
Q(1)z as the stabilizer of = in Q(1) and Hz = H*C[Q(1)=z] in subsection 2.9.

Lemma 4.4. Let x,x' be characters of Z,, and J C Sasx,J C Sasix'. Put Z=52, j,
= =2 g, and let V.V’ be irreducible C[Q(1)z], C[Q(1)=/]-modules, respectively. Let
{wi,...,w,} be a set of complete representatives of Q=\Q/Q= = Q/Q=Q=/, and define
= by EL(X) == (wiXw; '), Consider the representation of ClN)=]= w; 1CQ(1) = |wi
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twisting V' by w;, and we denote it by V/. Put Qz = =Q=NQ=z and Hz,=r = H=NHz='.
Then we have a commutative diagram with exact rows:

0 0

!

EBH =z, Homyaet (E@V,Z[ @ V))

!

I{1 (Q, HOHlHat‘f (WJ,X,Vvﬂ-J/,X/,V’

Exty (my,g,v, 0, 0r,v) —————— PExty,__ (EoV.EeV])
Eth}_[aff (WX,J7V,7TX/7J/7V/)Q _ @Ext;_[aff(E@)V, ®V) ==

The following theorem will be proved in subsection 4.4.

Theorem 4.5. The map Extj,_ _(E@V,Z'®@V') = Exty,u(E@V,Z @ V)%= s
surjective. ’

Combining with Lemma 4.4, we get the surjectivity of EXt%{(ﬂ'X’J’V,ﬂ'X/’J/’V/) —
Ext}ae (T, 7.v, Ty, g7, v ) stated in the introduction of this paper.

4.3. Extj.(EQV,2 V)=
To prove Theorem 4.5, we analyze Ext%_[aff(E@) V,=2 ®V/) ==, First, we have

Ext},u (2@ V,E @ V') & Extyune (£,2') @ Home (V, V')

and the surjective homomorphism F(Z,Z") — Ext;,ui (Z,Z'). We have the decomposition
E(Z,2)=E(E,Z)® E2(E,Z). Let E1(Z,2") (resp. F4(Z,Z')) be the image of E;(Z,Z)
(resp. E»(E,Z")). By the description of the kernel (4.1), we have:

. Ext;ﬁf(:,:’) E| (5,2 @ E5(E,2).
. El(~7'—‘ ) (:7:/)
e the dimension of the kernel of E»(=Z,Z") — F4(=Z,Z’) is at most 1.

Define E; (i =2,3) by E; = E2(5,Z") N e 4, (z,2/) Cs- Then dim E, dim £ <1 and E; #0
if and only if for any s € A;(Z,Z') we have sy = x

Assume that sx = x' for any s € A3(E,2'). Fix so € A3(5,E'). Then a = (as) —
asyX(cs,) "t gives an isomorphism Es ~ C. Let w € Q= =/(1). Then

(aw)SDX(CSO)_l = Qysw—1 (W%w_l)X(C%)_l~
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Since w stabilizes y, we have x(cg) = (w™'x)(cs) = x(w-cs) = X(Cogw—1). Therefore,
we have

(a’w)SoX(cSo)il :awswfl(w'%w )X Cwsow 1) !

= Qusw— 1X(cw9w 1) !

= asX(Cs) 1'

= =/

Here, the last equality follows from the definition of E5(Z,Z"). Namely, Q= = acts trivially
on E,. By the same argument, ()= =/ also acts trivially on E5. Therefore, it also acts
trivially on E5(Z,Z’), hence on F4(E,Z'). Hence,

(E3(2,2) @ Home (V,V")) == = Ey(Z,2") @ Homg,_ _, (V,V').

4.4. Proof of Theorem 4.5

Now we prove Theorem 4.5. Take e € Ext;ur (E®@V,Z' @ V)=’ and first, assume that
e € F{(8,2"). Therefore, e gives f, € Cs @ Home(V,V”). The space Cs @ Home(V, V') is
the space of functions fs on {55 is a lift of s} with values in Home(V,V’) such that
f(t18te) = X' (t1) f(8)x(t2) for t1,t2 € Z,;. Using this f,, we define an H-module structure

on VoV’ by
. (BT 0 Viw) 0
e (50 =im) = (0 vi)
where 5 € S,g, s its image in S, and f, =0 if s ¢ S1(E,Z). Since e is Qg =/-invariant and

E1(E,2') — E|(Z,Z') is injective, we have V' (w) fs(5)V (w™!) = feu-1 (wsw™!). Hence,

() G =) (5 )

- (f:((fw)) E’<Tf‘s“w1)>'

Namely, the above action gives an action of H,gC' [QE’E/]. Hence, this gives an extension

class in ExtH [(E@V,Z'@V"), and its image in Ext;,. (2@ V,E' @ V") corresponds to e.

Next, we assume that e comes from Fs- -part. Then we may assume that there exist
—_ =/

¢ € Homgq1),_ _,(V,V') and eg € E5(E,Z) such that e is given by eg @ ¢. Take a lift (as)
of ep in F2(Z,Z'), and consider the action of H¥C[Q(1)z =] on V@ V' defined by

ne () =) 2o (8 )

where 5 € S,g(1), s its image in Sag and as =0 if s ¢ So(E,Z'). Recall that Q(1)z = acts
trivially on (as). Since ¢ is £2(1)z =/-equivariant, the calculation as above shows that this
gives an action of Hg =
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4.5. Calculation of the extensions
‘We have

EthlH (7TX“]7V,7TX/’]/7V/) ~ @EXJD%'[E,E( E® V7E; ® V;/)
i i

Hence, it is sufficient to calculate Exty,__ (E®V,E.®V/). Now replacing (Z,V;) with

(Z2/,V'), we explain how to calculate Ext%_[EE/ EV.,Z'aV).
Theorem 4.5 implies '

dimExty,__ (EeV,Z'@V’)

=dim H'(Qz =, Homyen (E@ V,Z @ V') + dim Exty,ux (E@ V,E @ V') ==
Since HM acts trivially on V and V'’s, we have

Homyr (E@V,Z' @ V') = Homyer (£,2") @ Home (V, V'),
and it is zero if Z# =/ If == Z', then
Homyat (Z,2') @ Home (V, V') = Home (V, V),
and hence,
HY(Qzz, Homyur (EV,E @ V))) ~ H' (Qz,=, Home (V,V')).

This is a group cohomology of an abelian group.
We also have

Extyur (E@V,E @ V') = Ext}un (5,2) @ Home (V, V),
and
Ext},. (Z,2) = B (E,2') @ B4 (E,Z).

- =/

As we saw in subsection 4.3, Qz = acts trivially on F%(Z,Z"). Hence,
(Eé (E,E/) ®Homeg(V, Vv’ )) 28 = Eé (5, E/) & HOIIlQE’E,(l)(V,V/)7

and it is not difficult to calculate this.
Finally, we consider (E}(Z,Z") ® Hom¢g(V,V’))?

’

p]

. By Proposition 4.1, we have

E1(EE) = E1(EE) = Byes,(z.2)Cs- Fix so € S1(EE'), and let Q(1)zz,s, be the
stabilizer of sp in Q(1)z=z. Then C,, is an Q(1)z =z s -representation. Consider an
Q(1)z,=z-orbit S C S1(£,Z’). The subspace @, sCs is Q(1)z =/-stable, and we have an

=,

isomorphism

Pc.~mdyy

( )E,El,so
sES

defined by

(Cls) — (Ld = (go = awflsw)(wilgow))'
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Let {s1,...,8-} be a complete representative of the Q(1)g z/-orbits in S1(Z,Z’). Then we
have

— Q1
E(EE)~ @Indg(l
Hence,

(E\(E,E) @ Home (V, V")) %= = @(Cy, ® Home (V, V') =51

?

4.6. Example: G = GL,

Assume that the data come from GL,,. Then the data are as follows (see [17]).
We have Wy = S,,, W =85, x (F*X/O*)" =~ S, x Z", W(1) = S, x (F*/(1+ (w)))" =
Sp X (Zx k)™ and W = S, x {(2;) € Z™ | Y x; = 0}. Set

W= G ; ”n 1 ;‘) (0,...,0,1) € S, x Z" C W(1),
and denote its image in W by the same letter w. Then € is generated by w and Q(1) =
(w)(k*)™. We have w™ = (1,...,1), and it belongs to the center of W (1). The element
cs; € ClZ] is given by cs, =3 e, x Ty (4,1 (1)1 Where v;: K% — (£7)" is an embedding
to i-th entry and v, 41 =11.

Let my 5v and m,s y v+ be simple supersingular modules, and we assume that the
dimension of the modules are both n.

Remark 4.6. An importance of n-dimensional simple supersingular modules is revealed
by a work of Grosse-Klonne [9]. He constructed a correspondence between supersingular
n-dimensional modules of H and irreducible modulo p n-dimensional representations of
Gal(F/F).

We have dimm, ;v = (dimV)[Q: Qz]. Since (1) is (hence, (1)z is) commutative, we
have dimV = 1. Therefore, our assumption implies [ : Q=] = n. Since w™ is in the center,
(w") C Q=. Hence, Q= = (w") and Q= = (w")(k™)". Set A=V (w"). Since V|(.xyn =x, V
is determined by x and A. We also put \' = V'(w™).

We define x;: k* — C* by x(t1,...,tn) = x1(t1)... xn(tn), and we extend it for any
J€Z Dby Xj+n = X;- Then

X (j #ii+1),
(8ix)j = xiv1 (G =1),
Xi (j=i+1).

The description of c;, shows x(cs,) =0 if and only if x; = x;+1 if and only if s;x = x.
Therefore, Sag,y = {si € Sagr | Xi = Xi+1}-
We consider EX‘CLE = (Ee@V,Z2/®@V"). By Theorem 4.5, we have the exact sequence

0— H'(Qz,z, Homyare (E,E") @ Home (V,V')) = Exty,_ _ (E@V,E' @ V’)
— Extyu (EQV,E @V)%== - 0.
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The space Homyait (2,2') is C if E=E’ and 0 otherwise. We have Qz = = (w™) ~ Z and
w™ acts on Home(V, V') by A=\, Therefore, H*(Qz = Homc(V,V’)) Cif A=) and
0 otherwise. Namely, we get

1 E=E,V=V,

) (4.5)
0 otherwise.

dim H'(Qz =/, Homyer (Z,2') @ Home (V, V') = {

Note that Q= = acts on S.g trivially since {dz = is in the center of W. Hence, the
stabilizer of each s € Spg in Q= = is {2z = itself, and each orbit is a singleton. Therefore,
by the previous subsection, we have

Exty.r (EQV,E @ V)%=
= (Cs@Home(V,V'))%== & E(2,2") @ Homq,_ _, (V,V’).

sES1(EE)
Since w™ € Oz =/ s = Oz = is in the center of W (1), it acts trivially on Cs. Hence, (Cs ®
Home (V,V'))"=="+ = Homg_ _, (V,V’), and it is not zero if and only if A = \". Hence,
CHEFGEN(ZE) A=N
Extl(EQV,E @V )= ~ B E5(5F) "
0 otherwise.
A complete representative of 0/Q=Q= is given by {1Lw,...,w" 1}, Put 2/ = Z'w’. This is

parametrized by (yw?,J; = w’Jw™*). We have (xw®); Xjﬂ and wiJw = {s;4i|s; € J}.
We put V/ =V’'w'. Then V/(w) =V'(w) and V/|z, = xw'.

The cohomology group H'(Qz =/, Homyar (Z,Z)) @ Home(V,VY)) is zero if and only if
(E,V) # (2,,V/) by equation (4.5). There exists at most one ¢ such that (2,Z}) # (V,V/),

and such ¢ exists if and only if (Z,V) is Q-conjugate to (Z',V"). Hence,
dim @ H' (Qz =/, Homyan (2,Z]) @ Home (V, V7))

)1 (V) is Q-conjugate to (Z,V"),
~ |0 otherwise.

We also have

n—1
dim @ Ext} (ER@V,E @ V)%=

=0
R #S(EE) +dim B (EE)) A=,
~lo otherwise,

and each term can be calculated by the description in Proposition 4.1.

4.7. GLq

Now we assume n = 2, and we compute Ext},(my, 7 v,my s v+). We continue to use the
notation in the previous subsection. Then w switches sg and s;.
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Lemma 4.7. The nonvanishing of Eth]}-_L(’]T'XwJ’V,']TX/’J/’V/) implies that (x,J,V) is conju-
gate to (x',J, V') by Q.

Proof. As we have seen in the above, nonvanishing of Ext' implies V(w) = V’(w) =
(V'w)(w). Hence, it is sufficient to prove that (x,J’) is conjugate to (x’,J’).

If HY(Qz =/, Homyas (E®Z) @ Home (V,V')) # 0, we have Z=Z" and V = V'. Hence,
we have the lemma.

If Exty,u (E@V,Z/ @ V')%==" £0, then C # 0, hence x’ = sx for some s € Syg. Since we
assume G = GLy, sox = s1X = xw. Since 7y, v and m, j v are both supersingular, the
possibility of (J,J') is (0,0), ({so},{s1}), ({so}.{s1}); ({s0}:{s0}), ({s1},{s1}) and except
the last two cases, we have J = wJ'w™ . If J=J" = {50}, then sy € Sasr,; hence, sox = x.
Since sox = s1x, we have S,g,, = Sag. Hence, Sl(: =) = 0. We also have A3(E,Z) =
A3(Z,Z') = 0. Therefore, we get Exty,.(E@V,Z' @ V')%== = 0. By the same way, if
J=J" = {s1}, then Exty.s (E@V,Z @ V")== =0. O

Since m,, s,y only depends on the Q-orbit of (x,J,V), we may assume (x,J,V) =
(x',J,V'). In this case, H'(Qz =/, Homy: (E® V,Z; ® V;)) is one-dimensional if i =0
and zero if i = 1.

(1) The case of x1 = x2. Then we have S, = Sag. By the proof of Lemma 4.7, we
have Ext,.«(E@V,Z2® V) =0. We have $1(Z,5;) =0, A2(5,5)) = J; = wJw™!
and A3(2,E1) = Jo = J. Hence, the description in Proposition 4.1 shows that
dim F5(Z,Z') = 1, and hence, dimExt},.«(E@V,Z2@V) = 1.

(2) The case of x1 # x2. Then we have S,g , = (. Since x # sy = sxo for s = so,s1,
Cys = 0. Therefore, Ext},.« (2@ V,Z0® Vp) = 0. Since Sagr, =0, Z(Ts) = Z/(Ts) =0
for any s € Sa. We have A2(E,21) = A3(2,Z1) =0 and S1(Z,21) = Sag. Therefore,
Ei(E,El) =0 and dlmEé(E,El) = #SI(E,El = #Saﬂ‘ =2.

Hence, we have

0 (mx,0,v E Ty, 0,v7),
dimEXt%{(Wx,J,Vvﬁx’,J’,V’) =192 (WX,J,V XMy, JL V7 X1 = X2)s
3

(T, 1,V =T 77, v7s X1 7 X2)-

This recovers [7, Corollary 6.7]. (Note that in [7], they calculate the extensions with fixed
central character. Since we do not fix the central character here, the dimension calculated
here is one greater than the dimension they calculated.)
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