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Abstract

Let a random geometric graph be defined in the supercritical regime for the existence of
a unique infinite connected component in Euclidean space. Consider the first-passage
percolation model with independent and identically distributed random variables on
the random infinite connected component. We provide sufficient conditions for the exis-
tence of the asymptotic shape, and we show that the shape is a Euclidean ball. We give
some examples exhibiting the result for Bernoulli percolation and the Richardson model.
In the latter case we further show that it converges weakly to a nonstandard branching
process in the joint limit of large intensities and slow passage times.
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1. Introduction, main results, and examples

First-passage percolation (FPP) was initially introduced in [4] to study the spread of fluids
through a random medium. Since then, several variations of the percolation process have been
extensively investigated (see [1] for an overview of FPP on Z

d) due to their considerable theo-
retical consequences and applications. An FPP determines a random metric space by assigning
random weights to the edges of a graph.

We consider the FPP model defined on a random geometric graph (RGG) in R
d with d ≥ 2.

Here, the RGG is defined as in [11] by setting the vertices to be given by a homogeneous
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Poisson point process (PPP) with intensity λ> 0, and the edges are defined between any pair of
vertices that are within a Euclidean distance smaller than a fixed threshold r> 0. This random
graph is also known as the Poisson–Gilbert disk model. It is a graph associated to the Poisson–
Boolean model in continuum percolation, and it can also be seen as a particular case of the
random-connection model (see, for instance, [9]).

The properties and other details regarding the structure and definition of the process will be
given later in the text. We present here the basic definition in general terms. Let the parameters
(λ, r) of the RGG be supercritical for the almost-sure existence of a random infinite connected
component H. Note that the infinite component H is unique almost surely, and we define the
FPP model on H with independent and identically distributed random variables on the joint
probability space (�,A, P).

The aim of this paper is to investigate the P almost sure existence of the limiting shape of
the above-defined process. In fact, we show that, under some conditions, the random balls of
H converge P almost surely (a.s.) to the deterministic shape of a Euclidean ball. The additional
conditions refer to the distribution of zero passage time on the edges and the at least linear
growth of the process.

The model will be formally defined in the next sections; we first give a simplified description
of the process to state the main result. Let τ be a random variable which defines the common
distribution of the independent and identically distributed passage times τe along each edge
e ∈ E(H).

Set rc(λ)> 0 to be the critical r for the existence of the infinite connected component H of
the RGG Gλ,r. Let Bs(x) stand for the open Euclidean ball of radius s ≥ 0 centered at x ∈R

d,
and denote by υd be volume of the unit ball in d-dimensional Euclidean space. Denote by Ht

the random subset of Rd of points for which their closest point in H is reached by the FPP
model up to time t> 0. We let H0 be the set of points that have the same closest point in H as
the origin. Here is our first main theorem.

Theorem 1.1. (Shape theorem for FPP on RGGs.) Let d ≥ 2 and r> rc(λ). Consider the FPP
with i.i.d. random variables defined on the infinite connected component H of Gλ,r. Suppose
that the following conditions are satisfied:

A1 P(τ = 0)< 1/(υdrdλ).

A2 There exists η > 2d + 2 such that E[τη]<+∞.

Then, there exists ϕ ∈ (0,+∞) such that, for all ε ∈ (0, 1), P-a.s., (1 − ε)Bϕ(o) ⊆
(1/n)Hn ⊆ (1 + ε)Bϕ(o) for sufficiently large n ∈N.

The existence of the limiting shape is particularly interesting because the RGG is a random
graph which exhibits unbounded holes and unbounded degrees. To avoid the possible extreme
effects of such pathologies on the growth of the process, we control the growth almost surely
by combining the conditions above with properties of the point process.

The interest in applications for this class of models has already been pointed out in [6],
which, in particular, suggests the theorem for the Richardson model on telecommunication
networks. The example is naturally associated with the contact process by stochastic domi-
nation as studied in [10, 14]. Another interesting application is a lower bound for the critical
probability of bond percolation on the RGG. The same lower bound can be obtained by other
methods (e.g. branching processes); however, it shows in comparison how good and suitable
condition A1 is.
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FIGURE 1. Simulation of the open clusters for a bond percolation model on a two-dimensional RGG with
p< 1/(υdrdλ).

It is worth pointing out that a bigger class of random geometric graphs was studied in [5]
where the graph distance was interpreted as an FPP model. This suggests that the class of
RGGs could also be expanded in our case. We chose to focus our attention on the standard
definition in this work due to the usage of intermediate results presented in the next section.

Before we state our second main result, let us present some examples.

Example 1.1. (Bond percolation.) We define bond percolation by considering the clusters of
the Bernoulli FPP only at time zero; see Fig. 1 for an illustration. For this, let us call e ∈ E(H)
an open edge when τe = 0. Set τe ∼ Ber (1 − p) independently for every e ∈ E(H), and observe
that condition A2 is immediately satisfied.

Then, the open clusters are maximally connected components defined by sites with passage
time zero between them. Let us define the critical probability pc for the bond percolation on
the d-dimensional RGG by

pc := inf{p ∈ [0, 1] : P(there exists an infinite open cluster in H)> 0, τe ∼ Ber (1 − p)}.
Note that, by Theorem 1.1, the case p< 1/

(
υdrdλ

)
implies the existence of the limiting

shape. Thus, an immediate consequence of the theorem is the lower bound for the critical
probability pc ≥ 1/

(
υdrdλ

)
, and for p = 0 we recover H. We observe that the same lower bound

can also be obtained by exploration methods.

Example 1.2. (Richardson’s growth model.) Consider the interacting particle system known
as the Richardson model defined on the infinite connected component H of the RGG with
parameter λI > 0. It is a random growth process based on a model introduced in [15] and
illustrated in Fig. 2. It is commonly referred to as a model for the spread of an infection or for
the growth of a population.
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FIGURE 2. Simulation of the spread of an infection given by the Richardson model on a bidimensional
RGG.

At each time t ≥ 0, a site of H is in either of two states, healthy (vacant) or infected
(occupied). Let ζt : V(H) → {0, 1} indicate the state of the sites at time t, assigning the values
0 and 1 for the healthy and infected states, respectively. The process evolves as follows:

• A healthy particle becomes infected at rate λI
∑

y∼x ζt(y).

• An infected particle remains infected forever.

It is easily seen that the process is determined by FPP with edge passage times τe ∼
Exp(λI) independently for each e ∈ E(H). In particular, this version of the Richardson model
conventionally stochastically dominates the basic contact process.

Conditions A1 and A2 are straightforward since P(τ = 0) = 0< 1/
(
υdrdλ

)
and since

E[exp(ατ )]<+∞ for α ∈ (0, λI). Hence, Theorem 1.1 is valid for the Richardson model on
H for any supercritical r> rc(λ).

Futhermore, it is immediate to see that Theorem 1.1 still holds for any initial configuration
Z ⊆R

d of infected particles whenever Z ⊆ Bs′ (o) for some s′ > 0. In that case, we simply
replace Ht by HZ

t := ⋃
z∈Z Hz

t .

Our second main result concerns the asymptotic behavior of the Richardson model in the
limit as α diverges to infinity in αλ and λI/α. In words, we consider a coupled limit of high
densities and slow infection rates.
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Indicating the parameters explicitly now, we write Hλ,λI
t for the set of points in H reached

by the FPP model up to time t> 0. As before, Hλ,λI
0 is the closest point in H to the origin, with

Hλ,λI
0 = ∅ if there is no infinite component.

The limiting process is a branching process
(
T λ,λI

t
)

t≥0 defined as follows. At time zero,

the process has a node only at the origin, i.e. T λ,λI
0 = o. Then, iteratively, each node Xi ∈R

d

of the process produces offspring independently according to a Poisson process in time with
intensity υdrdλλI, and the offspring are placed independently and uniformly within Br(Xi). We
note that this process has similarities with the growth process as presented in [2]. Our second
main result follows.

Theorem 1.2. (Time–space rescaling for Richardson models.) Let d ≥ 2. For the Richardson
model with parameters r, λ, and λI, where r> rc(λ), we have

(
Hαλ,λI/α

t
)

t≥0 → (
T λ,λI

t
)

t≥0
weakly with respect to the Skorokhod topology based on the weak topology, as α tends to
infinity.

More details regarding the topologies involved in the above convergence are given in
Section 4.

The rest of the manuscript is organized as follows. In Section 2 we have compiled some
basic facts about RGGs and show results on the asymptotic behavior of the infinite component
H. The FPP model is defined in detail in Section 3, where we also present the proof of Theorem
1.1. Finally, in Section 4 we present the proof of Theorem 1.2.

2. On the random geometric graph

In this section we present the definition and parameters for an RGG, and the existence of
the infinite connected component. We also present some results about its geometry in order to
study the asymptotic shape in the next section.

Let Pλ be the random set of points determined by the homogeneous PPP on R
d with

intensity λ> 0. The RGG Gλ,r = (V, E) on R
d is defined by

V =Pλ, E = {{u, v} ⊆ V : ‖u − v‖< r, u �= v
}
,

where ‖ · ‖ is the Euclidean norm. Since λ−1/dPλ ∼P1, we may regard λ as fixed due to the
homogeneity of the norm. We write Gr := G1,r and P =P1. Set (
,F, μ) to be the probabil-
ity space induced by the construction of P . Let us now introduce the group action ϑ : Rd

�


determined by the spatial translation as a shift operator. That is, P ◦ ϑz = {v − z : v ∈P}.
The following lemma is a classical result on PPPs, which can be found, for example, in [9,
Proposition 2.6].

Lemma 2.1. The homogeneous PPP is mixing on (
,F, μ, ϑ).

Remark 2.1. Let S : Rd →R
d be an isometry. Then, it is known that S induces a μ-preserving

ergodic function σ :
→
 where S[P] =P ◦ σ .

We are interested in studying the spread of an infection on an infinite connected component
of Gr. It is a well-known fact from continuum percolation theory (see [9] or [11, Chapter 10] for
details) that, for all d ≥ 2, there exists a critical rc > 0 such that Gr has an infinite component
H μ-a.s. for all r> rc. Moreover, H is μ-a.s. unique. Since H is a subgraph of Gr, we denote
by V(H) and E(H) its sets of vertices and edges, respectively.
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From now on, we write (
′,F′, μ) for the probability space of the PPP conditioned on the
existence of H when r> rc. It suffices for our purposes to know that rc ≥ 1/υd

1/d, where υd

denotes the volume of the unit ball in the d-dimensional Euclidean space. Indeed, improved
lower and upper bounds can be found in [17], and rc approximates to 1/υd

1/d from above as
d → +∞.

Let us write θr := μ(Br(o) ∩ V(H) �= ∅) and denote the cardinality of a set by | · |.
Proposition 2.1. (Weaker version of [12, Theorem 1].) Let d ≥ 2, r> rc, and ε ∈ (0, 1/2).
Then, there exist c> 0 and s0 > 0 such that, for all s ≥ s0,

μ

(
(1 − ε)θr <

|V(H) ∩ [−s/2, s/2]d|
sd

< (1 + ε)θr

)
≥ 1 − exp

(−csd−1).
As a consequence of the last result, we present the following lemma without proof (see [18,

Lemma 3.3]).

Lemma 2.2. Let r> rc. Then there exist C,C′ > 0 such that, for each x ∈R
d and all s> 0,

μ
(
Bs(x) ∩ V(H) = ∅)≤ C exp

(−C′sd−1
)
.

Let P(x, y) denote the set of self-avoiding paths from x to y in H. The simple length of a
path γ = (x = x0, x1, . . . , xm = y) ∈ P(x, y) is denoted by |γ | = m.

Write D(x, y) for the H-distance between x, y ∈ V(H) given by D(x, y) = inf{|γ | : γ ∈
P(x, y)}.

Let x ∈R
d; then we define q : Rd → V(H) by

q(x) := arg min
y∈V(H)

{‖y − x‖}, (2.1)

the closest point to x in the infinity cluster. Observe from (2.1) that q may be multivalued
for some x ∈R

d. In that case, we assume that q(x) is uniquely defined by an arbitrarily fixed
outcome of (2.1). Hence, q induces a Voronoi partition of Rd with respect to H; see Fig. 3 for
an illustration.

We now extend the domain of the H-distance by defining D(x, y) := D(q(x), q(y)) for
every x, y ∈R

d. The following proposition can be immediately adapted from the proof of [18,
Theorem 2.2] by applying properties of Palm calculus and Lemma 2.2

Proposition 2.2. (Adapted from [18, Theorem 2.2].) Let d ≥ 2 and r> rc. Then there exists
ρr > 0 depending on r such that, μ-a.s. for all x ∈R

d,

lim‖y‖↑+∞
D(x, y)

‖y − x‖ = ρr.

The constant ρr is called the stretch factor of H. Observe that ρr ≥ 1/r. Due to the subad-
ditivity of the H-distance, we can easily see that Eμ[D(o, z)] with ‖z‖ = 1 is an upper bound
for ρr.

We have the following result about the tail behavior of D(o, z).

Lemma 2.3. Let d ≥ 2 and r> rc. Then there exist c1, c2 > 0 and β ′ > 1 such that, for all
x ∈R

d and every t>β ′‖x‖, μ(D(o, x) ≥ t) ≤ c1 exp (−c2t).

Proof. Let us write μv,w for the Palm measure μ ∗ δv ∗ δw for any given v,w ∈R
d. Set D to

be the simple Gr-distance. In what follows, v � w represents the existence of a path between
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FIGURE 3. A random geometric graph on R
2 with the Voronoi partition generated by the infinite

connected component H (in blue).

v and w in Gr. It is clear that D(v,w) = D(v,w) whenever v,w ∈ V(H). By [18, Lemma 3.4],
there exist c1, c2 > 0 and β ′ > 1 such that

μv,w
(
v � w and D(v,w) ≥ t

)≤ c1 exp (−c2t) (2.2)

for all t ≥ β ′‖v − w‖/2. Consider now Br(z) := Br(z) ∩P . We apply Lemma 2.2, (2.2), and
Campbell’s theorem to obtain that there exist C,C′ > 0 such that

μ
(
D(o, x) ≥ t

)≤μ(‖q(o)‖ ≥ t/(2β ′)) +μ(‖q(x) − x‖ ≥ t/(2β ′))

+μ

( ⋃
v∈Bt/(2β′)(o),w∈Bt/(2β′)(x)

{v � w and D(v,w) ≥ t}
)

≤ 2C exp (−C′t/(2β ′)) + c1
υ2

d

22d
t2d exp (−c2t)

for all t ≥ β ′‖x‖. We conclude the proof by choosing suitable c1, c2 > 0. �

Next, let us define, for every x ∈R
d, the quantity Wx

n := {self-avoiding paths of length n in
Gr starting at x} and note that, using [6, Theorem 4.6.11]), we have Eμ[|Wx

n|] = (
υdRd

)n.

Consider now
∣∣Wq(o)

n
∣∣, the number of self-avoiding paths in H starting at q(o). We apply the

previous result to prove the following lemma.

Lemma 2.4. Let d ≥ 2, r> rc, and κ > 1. Then we have, μ-a.s. for sufficiently large n ∈N,∣∣Wq(o)
n

∣∣< (κυdrd)n.
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Proof. Let n ∈N and define the events An := {|Wq(o)
n | ≥ (κυdrd)n

}
. Recall the notation

Bn(o) := Bn(o) ∩P . Then

An ⊆
( ⋃

v∈Bn(o)

{|Wv
n| ≥ (κυdrd)n, ‖q(o)‖< n

})∪ {‖q(o)‖ ≥ n}.

Hence, by Markov’s inequality, for any given x ∈R
d,

μ
(|Wx

n| ≥ (κυdrd)n)≤Eμ

[|Wx
n|
]
/(κυdrd)n = 1/κn.

Thus, by Lemma 2.2 and Campbell’s theorem, there exist C,C′ > 0 such that

+∞∑
n=1

μ(An) ≤ υd

+∞∑
n=1

nd

κn
+ C

+∞∑
n=1

e−C′nd−1
<+∞,

and thus an application of the Borel–Cantelli lemma completes the proof. �

3. First-passage percolation

We proceed to formally define our process. Let {τe}e∈E be a family of independent and
identically distributed random variables taking values in the time set [0,+∞). We say that τe

is the passage time of the edge e ∈ E(H).
Set (�,A, P) to be the joint probability space associated with the construction of the ran-

dom geometric graph Gr and the independent assignment of the random passage times {τe}e∈E.
The joint probability space can be constructed as a product space and we will write E=EP for
short.

Given any path γ = (x, x1, . . . , xm, y) ∈ P(x, y) for x, y ∈ V(H), we write e ∈ γ for an edge
e ∈ E(H) between a pair of consecutive vertices of γ . We denote the passage time of the path
γ by T(γ ) := ∑

e∈γ τe. The passage time between x, y ∈R
d is then defined by the random

variable T(x, y) := inf{T(γ ) : γ ∈ P(q(x), q(y))}. In fact, we see later that T(x, y) is a random
pseudo-metric when associated with a group action. To avoid cumbersome notation, we set
T(x) := T(o, x) for all x ∈R

d.
Using these definitions, we have Ht := {x ∈R

d : T(x) ≤ t} for the set of Voronoi cells
induced by H reached up to time t with the FPP starting in q(o).

Next, consider ϑ : Rd
�� to be an extension of the group action introduced in Section 2

such that ϑz will induce τ{x,y} �→ τ{x−z,y−z} independently in the product space. It is easily seen
that ϑ inherits the ergodic property of the previously defined group action and that Remark 2.1
still holds for actions on � associated with isometries by extending them in the same fashion.
Then, we observe that T(x, x + y) = T(y) ◦ ϑx, and that the subadditivity

T(x + y) ≤ T(x) + T(y) ◦ ϑx, (3.1)

for all x, y ∈R
d, is straightforward.

We have the following lemma.

Lemma 3.1. Let d ≥ 2, r> rc, and P(τ = 0)< 1/(υdrd). Then there exists a> 0 depending on
r such that, for all x ∈R

d, a‖x‖ ≤E[T(x)].

Proof. It suffices to prove this statement for large ‖x‖ as, due to the subadditivity (3.1) and
stationarity of T(nx, (n + 1)x) for all n ∈N, we have

E[T(mx)]/‖mx‖ ≤
m∑

i=1

E[T((i − 1)x, ix)]/‖mx‖ =E[T(x)]/‖x‖.
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Define the event A1
x := {max{‖q(o)‖, ‖q(x) − x‖} ≤ ‖x‖/4}. In order to simplify the notation,

let us abbreviate mx = �‖x‖/(2r)�. Note that on A1
x , every path γ ∈ P

(
q(o), q(x)

)
has |γ | ≥ mx

and therefore includes a subpath of length at least mx. Consequently, for any t> 0,

P({T(x) ≤ t} ∩ A1
x) = P

({
inf

γ∈P
(

q(o),q(x)
) T(γ ) ≤ t

}
∩ A1

x

)
≤ P

(
inf

γ∈Wq(o)
mx

T(γ ) ≤ t

)
.

In order to proceed, we first observe that, using Chernoff’s bound for the binomial
distribution with X ∼ Binomial(n, p), we have

P(X ≤ cn) ≤ exp

(
−n

(
c log

c

p
+ (1 − c) log

1 − c

1 − p

))
= (

p−c(1 − p)−(1−c) · cc(1 − c)(1−c))−n
,

where for c → 0 the base converges to (1 − p)−1. Also, because of the right continuity of the
cumulative distribution function associated to τ , there exist κ > 1 and δ > 0 such that P(τ ≤
δ)< 1/

(
κυdrd

)
. Further, consider a random variable X′ ∼ Binomial(n, P(τ > δ)) with respect

to P.
Note that τ ≥ δ1{τ > δ}, and therefore on any self-avoiding path of length |γ | = n the sum

of n i.i.d. copies of τ stochastically dominates δX′.
Therefore, there exists c> 0 and κ ′ > 1 such that, for all n ∈N and |γ | = n,

P(T(γ ) ≤ cn) ≤ P(X′ > cn/δ) ≤ (κ ′υdrd)−n.

Fix 1< κ ′′ < κ ′ and define A2
x := {∣∣Wq(o)

mx

∣∣≤ (κ ′′υdrd
)mx
}

and Ax := A1
x ∩ A2

x . Then, we have

P (T(x) ≤ cmx)≤ P((Ax)c) + P

(
Ax ∩

{
inf

γ∈Wq(o)
mx

T(γ ) ≤ cmx

})

≤ P((Ax)c) +E

[
1Ax ·

∑
γ∈Wq(o)

mx

1{T(γ ) ≤ cmx}
]

≤ P((Ax)c) + (
κ ′′υdrd)mx · (κ ′υdrd)−mx ,

where P((Ax)c) can be made arbitrarily small by choosing ‖x‖ large enough via Lemmas 2.2
and 2.4. As κ ′′ < κ ′, the exponent in the second summand is negative and dominates the
polynomial term for large x. Therefore, there is a k such that, for all x ∈R

d with ‖x‖ ≥
k, P(T(x) ≤ cmx) ≤ 1

2 . Setting a = c/4r we arrive at the statement a‖x‖ ≤E[T(x)] when
‖x‖> k. �

Remark 3.1. Observe that E[T(x)] ≤E[D(o, x)]E[τ ] due to the subadditivity and Fubini’s the-
orem. Moreover, condition A2 implies that E[τ ]<+∞. We can easily see from Proposition 2.2
and the L1 convergence given by Kingman’s subadditive ergodic theorem [8] applied to the
H-distance, that, for all x ∈R

d,

b := ρrE[τ ] ≥ lim sup
n↑+∞

E[T(nx)]/‖nx‖.

Denote by Pξ the quenched probability of the propagation model given a realization ξ ∈
′.
The following lemma ensures the at least linear growth of the passage times.

Lemma 3.2. Let d ≥ 2, r> rc, and assume that condition A2 holds. Then there exist determinis-
tic β > 0 and κ> 1 such that, for every x, y ∈R

d and for each ξ ∈
′, Pξ (T(x, y) ≥ t) ≤ t−(d+κ)

for all t ≥ βD(x, y).
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Proof. Let γ ∈ P(x, y)(ξ ) be a geodesic given by the H-distance. Then, by Markov’s
inequality, for t>E[τ ]D(x, y) and η from condition A2,

Pξ (T(x, y) ≥ t) ≤ Pξ (T(γ ) ≥ t) ≤ Eξ

[(∑
e∈γ (τe −E[τ ])

)η]
(t −E[τ ]D(x, y))η

. (3.2)

Rosenthal’s inequality [16] states that, if Y1, . . . , Yn are independent random variables with
mean zero and finite moment of order p> 2, then

E

[(
n∑

i=1

Yi

)p]
≤ Cp · max

{
n∑

i=1

E[|Yi|p] ;

(
n∑

i=1

E[(Yi)
2]

)p/2}
,

where Cp > 0 is a constant that depends only on p. Since condition A2 holds and (τe −E[τe])
are identically distributed for all e ∈ γ , this yields

Eξ

[(∑
e∈γ

(τe −E[τ ])

)η]
≤ CD(x, y)η/2, (3.3)

where C is now a constant that depends both on η and on the distribution of the random
variables.

In the case t ≥ 2E[τ ] D(x, y) we have t −E[τ ] D(x, y) ≥ t/2. Using this and (3.3), the right-
hand side of (3.2) is smaller than 2ηCD(x, y)η/2t−η. If we also have t ≥ 4C2/ηD(x, y), this is
smaller than t−η/2. We have thus proved that Pξ (T(x, y) ≥ t) ≤ t−(d+κ) for all t ≥ βD(x, y), with
β := max{2E[τ ], 4C2/η} and κ := η/2 − d> 1. �

Before proving our first main theorem, we state and prove the following result. It is an
annealed version of the at least linear growth from the lemma above in all directions.

Lemma 3.3. Let d ≥ 2 and r> rc. Consider the i.i.d. FPP on the RGG satisfying condition A2.
Then, there exist constants δ,C> 0 and κ> 1 such that, for all t> 0 and all x ∈R

d,

P

(
sup

y∈Bδt(x)
T(x, y) ≥ t

)
≤ Ct−κ.

Proof. Due to the translation invariance it suffices to prove the lemma for x = 0. Let
δ = (β ′β)−1 with β ′ and β from Lemmas 2.3 and 3.2. Set cd > 0 to be such that B2δ(o) ⊆
[−cd/2, cd/2]d, and write Cd := 2θrcd with θr > 0 from Proposition 2.1. Let us now define
the following events:

G1 := {q(o) ∈ Bδt(o)} ∩ {|Bδ2t(o) ∩ V(H)| ≤ Cd · td
}
,

G2 :=
{

sup
‖y‖≤δt

D(o, y) ≤ t/β

}
∩ G1,

G3 :=
{

sup
‖y‖≤δt

T(o, y) ≥ t

}
∩ G1 ∩ G2.

Now,

P

(
sup

y∈Bδt(o)
T(o, y) ≥ t

)
≤ P(G3) + P

(
Gc

1

)+ P
(
Gc

2

)
, (3.4)
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where the last two summands decrease exponentially in t due to Proposition 2.1 and Lemmas
2.2 and 2.3. By Lemma 3.2, there exists κ> 1 such that

P(G3) ≤E

[
1{ξ ∈ G1 ∩ G2}Pξ

(
sup

‖y‖<δt
T(y) ≥ t

)]
≤ Cdtd/td+κ.

Combining this with (3.4), the desired bound is obtained by choosing a suitable C> 0. �

After this preparatory work, we now proceed to prove Theorem 1.1. The methods are closely
related to standard techniques for shape theorems which can be found in [7], for instance.

Proof of Theorem 1.1. We begin by verifying properties of T(nx). Note that, for every x ∈R
d,

E[T(x)]<+∞ by Lemmas 2.3 and 3.2. Recall that the process is mixing on (�,A, P, ϑ) by
Lemma 2.1. Then, by the subadditivity (3.1), we apply Kingman’s subadditive ergodic theorem
to obtain that, P-a.s. for all x ∈R

d,

lim
n↑+∞

T(nx)

n
= φ(x), (3.5)

where φ : Rd → [0,+∞) is a homogeneous and subadditive function given by

φ(x) = inf
n≥1

E[T(nx)]

n
= lim

n↑+∞
E[T(nx)]

n
.

Since the process is rotation invariant, there exists a constant ϕ (the time constant) such that
φ(x) = ϕ−1‖x‖ for all x ∈R

d. In fact, from Lemma 3.1 and Remark 3.1,

0< a ≤ ϕ−1 ≤ b = ρrE[τ ]<+∞.

Let us now prove the P almost sure asymptotic equivalence

lim‖y‖↑+∞
T(y)

‖y‖ = 1

ϕ
. (3.6)

For the approach from below, we prove the equivalent statement that, for every ε ∈ (0, 1),

lim sup
s↑+∞

(
sup

‖y‖≤(1−ε)s

T(y)

s

)
= lim sup

m∈N,m↑+∞

(
sup

‖y‖≤(1−ε)m

T(y)

m

)
≤ 1

ϕ
P− a.s.,

where the first equation holds as �s�/s converges to 1. Fix ε ∈ (0, 1) and let δ be given
by Lemma 3.3. Due to compactness, there exists a finite cover of open balls with centers
(yi)i∈{1,...,n} ⊆R

d with ‖yi‖ ≤ 1 − ε such that

B1−ε(o) ⊆
⋃

i∈{1,...,n}
Bδε/(2ϕ)(yi).

Furthermore, Bm(1−ε)(o) ⊆⋃
i∈{1,...,n} Bmδε/(2ϕ)(myi) for every m ∈N. Applying Lemma 3.3,

we obtain ∑
m∈N

P

(
sup

‖y−myi‖≤mδε/(2ϕ)
T(myi, y)>mε/(2ϕ)

)
<∞.
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Therefore, by the Borel–Cantelli lemma,

lim sup
m∈N,m↑+∞

(
sup

‖myi−y‖≤mδε/(2ϕ)

T(myi, y)

m

)
<
ε

2ϕ
P− a.s.

Applying (3.5) and subadditivity, we obtain

lim sup
m↑+∞;‖y‖≤(1−ε)m

T(y)

m
≤ lim sup

m↑+∞

(
max

i∈{1,...n}
T(o,myi)

m
+ sup

‖myi−y‖≤mδε/(2ϕ)

T(myi, y)

m

)

≤ max
i∈{1,...,n} ‖yi‖/ϕ + ε/(2ϕ)< 1/ϕ P− a.s.,

where we used that ‖yi‖< 1 − ε.
For the approach from above, define At := Bt(1+2ε)(o) \ Bt(1+ε)(o) and observe that it

suffices to prove

lim inf
m∈N,m↑+∞

(
inf

y∈At

T(y)

m

)
≥ 1

ϕ
P− a.s.

for arbitrary but fixed ε > 0, as for t> ε and any x with ‖x‖> t(1 + 2ε) there exists an x̃ ∈ At

with T(x̃) ≤ T(x).
Similar to the approach from below, fix ε > 0 and δ > 0 small enough that Lemma 3.3

holds. There exists a set of centers (yi)i∈{1,...,n} ⊆R
d with ‖yi‖ ≥ 1 + ε such that At ⊆⋃

i∈{1,...,n} Bδε/(2ϕ)(yi), and hence

lim inf
m∈N,m↑+∞

(
inf

y∈Am

T(y)

m

)
≥ lim inf

m∈N,m↑+∞

(
min

i∈{1,...n}
T(o,myi)

m
− sup

‖myi−y‖≤mδε/(2ϕ)

T(myi, y)

m

)

≥ min
i∈{1,...n} ‖yi‖/ϕ − ε/(2ϕ)> 1/ϕ,

which concludes the proof of the asymptotic equivalence in (3.6). The proof of the theo-
rem is now complete by standard arguments of the P almost sure uniform convergence given
by (3.6). �

4. Proof of Theorem 1.2

Throughout this section, we fix r, λ, and λI.
We start by giving some details on the topologies involved in the statement of Theorem 1.2,

and introducing some notation.
Let M denote the space of measures of the form μ=∑k

i=1 δ{zi}, where k ∈N0 and
z1, . . . , zk ∈R

d are distinct. We endow this space with the weak topology, under which a

sequence μn converges to μ if and only if
∫

f dμn
n→+∞−−−−→ ∫

f dμ for all f : Rd →R that are
continuous and bounded. This topology is metrizable; see [13]. A sequence μn converges to
μ=∑k

i=1 δ{zi} in this topology if and only if the following two conditions are satisfied: first,
for n large enough, the total masses agree, i.e. μn(Rd) =μ(Rd) = k, and second, we can take

an enumeration (for n large enough) μn =∑k
i=1 δ{zn,i} so that zn,i

n→+∞−−−−→ zi for each i.
We let D0 be the space of all functions γ : [0,∞) →M of the form

γ (t) =
∞∑

k=0

1{sk ≤ t}δ{zk}, t ≥ 0,
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where z0, z1, . . . ∈R
d are distinct, 0 = s0 < s1 < s2 < · · · , and sn

n→+∞−−−−→ ∞. For γ of this
form, we let φk(γ ) = zk, k ≥ 0, andψk(γ ) = sk − sk−1, k ≥ 1. We endow D0 with the Skorokhod
topology; see [3, Chapter 3]. Note that this gives rise to a topological subspace of the more
usual space D of càdlàg functions; since the processes we are considering have constant-by-
parts trajectories, it is more natural for us to work on D0 than in D. By the definition of the
Skorokhod topology, it is easy to see that

γn
n→+∞−−−−→ γ if and only if

φk(γn)
n→+∞−−−−→ φk for all k ≥ 0, ψk(γn)

n→+∞−−−−→ψk(γ ) for all k ≥ 1. (4.1)

Now let �(γ ) := (φ0(γ ), φ1(γ ), ψ1(γ ), φ2(γ ), ψ2(γ ), . . . ), γ ∈ D0. Note that � is a one-to-
one mapping from D0 to �(D0) ⊂R

d × (Rd × (0,∞))N. We endow �(D0) with the product
topology (under which convergence means convergence in each coordinate, with respect to
the Euclidean topology). With this choice, by (4.1), � is a homeomorphism between D0 and
�(D0).

We now return to the processes
(
Hαλ,λI/α

t
)

t≥0 and (T λ,λI
t )t≥0 and note that, for any t ≥ 0,

Hαλ,λI/α
t can be written as

∑
zi∈H 1{si ≤ t}δ{zi}, where si is the (random) time at which the point

zi is first reached in the FPP model. In particular, by Theorem 1.1, Hαλ,λI/α
t ∈M and the same

holds for T λ,λI
t . Now, write Zα,k := φk((Hαλ,λI/α

t )t≥0) and Zk := φk((T λ,λI
t )t≥0) for k ≥ 0, and

note that Zα,0 = q(o) and Z0 = o. Also, write Tα,0 = T0 := 0, Tα,k := ψk((Hαλ,λI/α
t )t≥0), and

Tk := ψk((T λ,λI
t )t≥0), k ≥ 1. With this notation, we can state the folllowing result.

Proposition 4.1. Let k ∈N, f0, . . . , fk : Rd →R, and g1, . . . , gk : (0,+∞) →R; assume all
these functions are continuous with compact support. Then,

E

[
f0(Zα,0)

k∏
i=1

fi(Zα,i)gi(Tα,i)

]
α→+∞−−−−→ f0(o) ·E

[
k∏

i=1

fi(Zi)gi(Ti)

]
. (4.2)

We will prove this proposition later; for now, let us show how it implies Theorem 1.2.

Proof of Theorem 1.2. Proposition 4.1 and standard approximation arguments imply that,
for all k,

(Zα,0, Zα,1, Tα,1, . . . , Zα,k, Tα,k)
α→+∞−−−−→ (Z0, Z1, T1, . . . Zk, Tk)

in distribution. This implies that

(Zα,0, Zα,1, Tα,1, Zα,2, Tα,2, . . . )
α→+∞−−−−→ (Z0, Z1, T1, Z2, T2, . . . ) (4.3)

in distribution, because convergence in distribution in the infinite product topology is equiva-
lent to convergence of all finite-dimensional distributions. Given a function h : D0 →R that is
continuous and bounded, we have

E
[
h
((
Hαλ,λI/α

t
)

t≥0

)]=E
[
h
(
�−1(Zα,0, Zα,1, Tα,1, Zα,2, Tα,2, . . .

))]
α→+∞−−−−→E

[
h
(
�−1(Z0, Z1, T1, Z2, T2, . . .

))]=E
[
h
((
T λ,λI

t
)

t≥0

)]
,

where the convergence follows from (4.3) and the fact that h ◦�−1 is continuous and bounded.
This proves that

(
Hαλ,λI/α

t
)

t≥0 converges to
(
T λ,λI

t
)

t≥0 in distribution. �
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In order to prove Proposition 4.1, it is important to have a more explicit description of the
expectations that appear in (4.2). To this end, let us give some definitions. Recall that Pαλ
denotes a PPP on R

d with intensity αλ; we assume that this is the point process that gives rise
to the infinite cluster in which the growth process

(
Hαλ,λI/α

t
)

t≥0 is defined. Given a realization
of Pαλ and a finite set S ⊆Pαλ, define

Nα(S) :=
∑
x∈S

|(Pαλ ∩ Br(x))\S| =
∑

y∈Pαλ\S

|{x ∈ S : ‖x − y‖ ≤ r}|.

We now introduce probability kernels for each value of α; these encode the jump rates of
the dynamics of the growth process, conditioned on the realization of Pαλ. We start with the
temporal kernel

Lα(S, dt) := Nα(S)λI

α
· exp

(
−Nα(S)λI

α
· t

)
dt,

where S is any finite subset of Pαλ and Lα(S, ·) gives a measure on the Borel sets of (0,∞),
described above in terms of its density with respect to Lebesgue measure. Next, define the
spatial kernel

Kα(S, A) := 1

Nα(S)
·
∑

y∈Pαλ\S

|{x ∈ S : ‖x − y‖ ≤ r}| · δ{y}(A),

where S is any finite subset of Pαλ and A is a Borel subset of R
d, so that Kα(S, ·) gives a

probability measure on R
d. Finally, define the kernel Kα(S, d(x, t)) := Kα(S, dx) ⊗Lα(S, dt),

i.e. Kα(S, ·) is the measure on R
d × (0,+∞) that satisfies, for any continuous functions

f : Rd →R and g : (0,+∞) →R with compact support,∫
Rd×(0,+∞)

f (x)g(t) Kα(S, d(x, t)) =
∫
Rd

f (x) Kα(S, dx) ×
∫

(0,+∞)
g(t) Lα(S, dt).

Now, using the strong Markov property, we can write

E

[
f0(Zα,0)

k∏
i=1

fi(Zα,i)gi(Tα,i)

]

=E

[
f0(q(o))

∫
Kα({q(o)}, d(z1, t1))f1(z1)g1(t1)

×
∫

Kα({q(o), z1}, d(z2, t2))f2(z2)g2(t2) · · ·

×
∫

Kα({q(o), z1, . . . , zk−1}, d(zk, tk))fk(zk)gk(tk)

]
. (4.4)

We now define the analogous kernels for the limiting growth process. The temporal kernel
is given by

L(S, dt) := |S|υdrdλλI · exp
(−|S|υdrdλλI · t

)
dt,

where S ⊆R
d is finite, and again we obtain a measure on (0,∞). Next, the spatial kernel is

given by

K(S, dy) :=
(

1

|S|υdrd

∑
x∈S

1{y ∈ Br(x)}
)

dy
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for S ⊆R
d finite. So K(S, ·) is the probability measure on R

d obtained from first choosing x ∈ S
uniformly at random, and then choosing a point y ∈ Br(x) uniformly at random. We again let
K(S, d(x, t)) := K(S, dx) ⊗L(S, dt). Again by the Markov property, the equality in (4.4) holds
for the limiting process with respect to this kernel (that is, the same equality with q(o) replaced
by o and all αs omitted).

The following is the essential ingredient in the proof of Proposition 4.1.

Lemma 4.1. Let f : Rd →R and g : (0,+∞) →R be continuous with compact support, k ∈N,
and ε > 0. There exists α0 > 0 such that, for any α ≥ α0, we have that, with probability larger
than 1 − ε, Pαλ satisfies the following. For any set S ⊆ Bkr(o) ∩Pαλ with |S| ≤ k,∣∣∣∣

∫
Rd

f (x)g(t) Kα(S, d(x, t)) −
∫
Rd

f (x)g(t) K(S, d(x, t))

∣∣∣∣< ε.
We postpone the proof of this lemma; it will immediately follow from Lemmas 4.3 and

4.4 below, which separately treat the spatial and temporal kernels. For now, let us show how
Lemma 4.1 implies Proposition 4.1.

Proof of Proposition 4.1. We abbreviate

[Kαfg](S) :=
∫
Rd×(0,+∞)

f (x)g(t) Kα(S, d(x, t)),

and also Sα,k := {Zα,0, Zα,1, . . . , Zα,k}, k ∈N0; similarly when α is absent.
We proceed by induction on k ∈N0. We interpret the case k = 0 to mean that

E[f0(Zα,0)]
α→+∞−−−−→ f0(0), which holds because Zα,0 = q(o) converges in probability to o as

α→ +∞, as is easily seen. Now assume that the statement has been proved for k − 1 ≥ 0, and
take functions f1, . . . , fk, g1, . . . , gk as in the statement. It is convenient to add and subtract as
follows (for k = 1, we interpret

∏0
i=1 as being equal to one):

E

[
f0(Zα,0)

k−1∏
i=1

fi(Zα,i)gi(Tα,i)

]

=E

[
f0(Zα,0)

k−1∏
i=1

fi(Zα,i)gi(Tα,i) · [Kαfkgk](Sα,k)

]

=E

[
k−1∏
i=1

fi(Zα,i)gi(Tα,i) · ([Kαfkgk](Sα,k) ± [Kfkgk](Sα,k))

]
.

Noting that the function that maps (z0, z1, t1, . . . , zk−1, tk−1) into

f0(z0)
k−1∏
i=1

fi(zi)gi(ti) · [Kfkgk]({z0, z1, . . . , zk−1})

is continuous, the induction hypothesis and the definition of weak convergence give

E

[
f0(Zα,0)

k−1∏
i=1

fi(Zα,i)gi(Tα,i)[Kfkgk](Sα,k)

]

α→+∞−−−−→E

[
f0(Z0)

k−1∏
i=1

fi(Zi)gi(Ti)[Kfkgk](Sk)

]
=E

[
f0(Z0)

k∏
i=1

fi(Zi)gi(Ti)

]
.
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Next, we bound

E

[
f0(Zα,0)

k−1∏
i=1

fi(Zα,i)gi(Tα,i) · |[Kαfkgk](Sα,k) − [Kfkgk](Sα,k)|
]

≤
(

max
i≤k−1

(‖fi‖∞ ∨ ‖gi‖∞)

)k

·E[|[Kαfkgk](Sα,k) − [Kfkgk](Sα,k)|].

By Lemma 4.1, the right-hand side converges to zero as α→ ∞. This completes the
proof. �

It remains to prove Lemma 4.1. To do so, let us now introduce some more notation. For
each δ > 0, we define the collection of cubes Cδ := {δz + [−δ/2, δ/2)d : z ∈Z

d}. Additionally,
given α > 0, � ∈N, and δ > 0, we define the event (involving the set Pαλ, but not the passage
times)

REGα(�, δ) :=
{∣∣∣∣ |Pαλ ∩ Q|

αλδd
− 1

∣∣∣∣< δ for all Q ∈ Cδ with Q ⊆ B�(o)

}
.

By the law of large numbers we have

lim
α→+∞ P(REGα(�, δ)) = 1. (4.5)

Lemma 4.2. For any ε > 0 and k ∈N there exists δ1 = δ1(ε, k) such that the following holds
for δ ∈ (0, δ1]. For any �≥ r, if α is large enough and the event REGα(�+ 1, δ) occurs, then,
for any S ⊆Pαλ ∩ B�−r(o) with |S| ≤ k,

∑
x∈S

∑
Q∈Cδ

∣∣∣∣ |(Pαλ ∩ Q ∩ Br(x))\S|
αλ

−
∫

Q
1{‖y − x‖ ≤ r} dy

∣∣∣∣< ε. (4.6)

Proof. It is not hard to see that we can choose δ′ > 0 so that, for any δ < δ′,

δd sup
x∈Rd

∑
Q∈Cδ

1{Q ∩ ∂Br(x) �=∅}< ε

3k
, (4.7)

where ∂Br(x) := {y ∈R
d : ‖x − y‖ = r}. Next, we let δ1 := min(δ′, ε/2υdrd).

Now, assume that δ < δ1 and that REGα(�+ 1, δ) occurs. Fix S ⊆Pαλ ∩ B�−r(o) with
|S| ≤ k, and also fix x ∈ S. For each Q ∈ Cδ define

Ex(Q) :=
∣∣∣∣ |(Pαλ ∩ Q ∩ Br(x))\S|

αλ
−
∫

Q
1{‖y − x‖ ≤ r} dy

∣∣∣∣.
If Q ∩ ∂Br(x) �=∅ we bound

Ex(Q) ≤ |Pαλ ∩ Q|
αλ

+ δd ≤ (1 + δ)δd + δd = (2 + δ)δd

by the triangle inequality and the definition of REGα(�, δ). If Q ⊆ Br(x) with Q ∩ ∂Br(x) =∅

we have |Pαλ ∩ Q ∩ Br(x)|
αλ

= |Pαλ ∩ Q|
αλ

∈ ((1 − δ)δd, (1 + δ)δd),
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so we bound Ex(Q) ≤ (k/αλ) + δ · δd ≤ 2δd+1 (the factor k/αλ is there to account for the pos-
sibility that Q contains some points of S; the second inequality holds if α is large enough that
k/(αλ)< δd+1). Now, also using (4.7), the left-hand side of (4.6) is at most∑

x∈S

∑
Q∈Cδ

Ex(Q) ≤
∑
x∈S

(
(2 + δ)δd

∑
Q∈Cδ

1{Q ∩ ∂Br(x) �=∅} + 2δd+1 υdrd

δd

)

≤ k ·
(

(2 + δ)ε

3k
+ 2δd+1 υdrd

δd

)
.

If δ is small enough, the right-hand side is smaller than ε, completing the proof. �

Lemma 4.3. Let f : Rd →R be continuous with compact support, k ∈N, and ε > 0. There
exists α0 > 0 such that, for any α ≥ α0, with probability larger than 1 − ε, Pαλ satisfies the
following. For any set S ⊆ Bkr(o) ∩Pαλ with |S| ≤ k,∣∣∣∣

∫
Rd

f (x) Kα(S, dx) −
∫
Rd

f (x) K(S, dx)

∣∣∣∣< ε.
Proof. Fix f , k, and ε as in the statement of the lemma. Since f is continuous with compact

support, it is easy to see that we can choose a constant δ0 small enough that, for any δ ∈ (0, δ0),
supμ′,μ′′

∣∣ ∫
Rd f dμ′ − ∫

Rd f dμ′′∣∣< ε, where the supremum is taken over all pairs of probability
measures μ′, μ′′ on Borel sets of Rd with∑

Q∈Cδ
|μ′(Q) −μ′′(Q)|< δ. (4.8)

Next, let ε′ := δ0υdrd/2, and choose the constant δ1 = δ1(ε′, k) as in Lemma 4.2.
Letting � be large enough that the support of f is contained in B�(o), assume that the event

REGα(�+ rk + 1, δ1) occurs, and let S ⊆ Brk(o) ∩Pαλ be a set with at most k points. Using
the triangle inequality and Lemma 4.2, we bound

∑
Q∈Cδ1

∣∣∣∣Nα(S)

αλ
·Kα(S,Q) − |S|υdrd ·K(S,Q)

∣∣∣∣
≤
∑
x∈S

∑
Q∈Cδ1

∣∣∣∣ |(Pαλ ∩ Q ∩ Br(x))\S|
αλ

−
∫

Q
1{‖y − x‖ ≤ r} dy

∣∣∣∣≤ ε′. (4.9)

Using the fact that
∑

Q Kα(S,Q) =∑
Q K(S,Q) = 1, this readily gives∣∣∣∣Nα(S)

αλ
− |S|υdrd

∣∣∣∣=
∣∣∣∣Nα(S)

αλ

∑
Q∈Cδ

Kα(S,Q) − |S|υdrd
∑

Q∈Cδ
K(S,Q)

∣∣∣∣
≤
∑

Q∈Cδ1

∣∣∣∣Nα(S)

αλ
·Kα(S,Q) − |S|υdrd ·K(S,Q)

∣∣∣∣≤ ε′. (4.10)

Next, the triangle inequality gives, for any Q ∈ Cδ ,

|Kα(S,Q) −K(S,Q)| ≤ 1

|S|υdrd

(∣∣∣∣|S|υdrd − Nα(S)

αλ

∣∣∣∣ ·Kα(S,Q)

+
∣∣∣∣Nα(S)

αλ
·Kα(S,Q) − |S|υdrd ·K(S,Q)

∣∣∣∣
)

.
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Combining this with (4.9) and (4.10), we obtain

∑
Q∈Cδ1

|Kα(S,Q) −K(S,Q)| ≤ ε′

|S|υdrd

( ∑
Q∈Cδ1

Kα(S,Q) + 1

)
≤ 2ε′

υdrd
= δ0.

This shows that Kα(S, ·) and K(S, ·) are close enough in the sense that (4.8) is satisfied. The
proof is now completed using (4.5). �

The following lemma is proved in a similar manner to Lemma 4.3, only simpler, so we omit
the details.

Lemma 4.4. Let g : (0,+∞) →R be continuous with compact support, k ∈N, and ε > 0.
There exists α0 > 0 such that, for any α ≥ α0, with probability larger than 1 − ε, Pαλ satisfies
the following. For any set S ⊆ Bkr(o) ∩Pαλ with |S| ≤ k,∣∣∣∣

∫
(0,+∞)

g(t) Lα(S, dt) −
∫

(0,+∞)
g(t) L(S, dt)

∣∣∣∣< ε.
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