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Abstract
For any algebraically closed field K and any endomorphism f of P1(K) of degree at least 2, the automorphisms of f
are the Möbius transformations that commute with f , and these form a finite subgroup of PGL2 (K). In the moduli
space of complex dynamical systems, the locus of maps with nontrivial automorphisms has been studied in detail
and there are techniques for constructing maps with prescribed automorphism groups that date back to Klein. We
study the corresponding questions when K is the algebraic closure F̄p of a finite field. We use the classification
of finite subgroups of PGL2 (F̄p) to show that every finite subgroup is realizable as an automorphism group. To
construct examples, we use methods from modular invariant theory. Then, we calculate the locus of maps over F̄p

of degree 2 with nontrivial automorphisms, showing how the geometry and possible automorphism groups depend
on the prime p.

1. Introduction

Let K be an algebraically closed field. A dynamical system of degree d on the projective line is an
endomorphism of P1(K) and can be represented in coordinates as a pair of homogeneous polynomials of
degree d with coefficients in K and no common factors. We assume throughout that d ≥ 2. The set of all
such dynamical systems is denoted Ratd. There is a natural conjugation action on Ratd by automorphisms
of P1, the group PGL2, given as:

f α = α−1 ◦ f ◦ α for f ∈ Ratd and α ∈ PGL2.
The quotient by this action, see Silverman [15], is the moduli space of dynamical systems of degree d:

Md := Ratd/PGL2.

We use square brackets to distinguish between a map f in Ratd and its conjugacy class [f ] in Md. An
automorphism (or symmetry) of f is an element α of PGL2(K) such that

f α = f .

The set of such α is a subgroup of PGL2(K), called the automorphism group of f . We denote it Aut(f ).
Since these automorphisms have finite invariant sets of points, such as the periodic points of some fixed
period, the automorphism group of a given map must be finite.

Our objects of study are those maps f for which Aut(f ) is nontrivial: that is, those f which have
an automorphism besides the identity. As is the case with elliptic curves that have complex multi-
plication, dynamical systems with nontrivial automorphisms can feature exceptional properties. For
instance, a complex dynamical system with icosahedral symmetry was used to solve the quintic through
iteration [6].
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We will need to know how conjugation affects automorphism groups. Given σ ∈ PGL2, the conjuga-
tion action on Aut(f ) defined by α �→ ασ defines a group isomorphism:

Aut(f ) ∼= Aut(f σ ).

The conjugacy class of Aut(f ) in PGL2 is, thus, a well-defined invariant of [f ]. When we speak of
the automorphism group associated with [f ], we understand this group to be well defined only up to
conjugacy.

In particular, the locus of rational maps with a nontrivial automorphism group descends to a well-
defined subset of Md. We call this set the automorphism locus of Md, denoted as Ad. Note that
conjugation may affect the field of definition of both the map and its automorphism group, and deter-
mining the minimal field of definition of a conjugacy class and/or its automorphism group can often be
a delicate question, e.g., [4, 14].

In this article, we initiate the study of dynamical systems with nontrivial automorphisms over finite
fields and their algebraic closures. Specifically, we address the following pair of questions:

(1) How can we construct examples of dynamical systems over F̄p with nontrivial automorphisms,
and which automorphism groups can arise?

(2) What is the structure of the automorphism locus A2 in the moduli space M2(F̄p)?

We fully resolve the realizability problem.

Theorem 1.1. Every finite subgroup of PGL2(F̄p) occurs as the automorphism group of some dynamical
system.

We do not place restrictions on the degrees of the maps which realize the automorphism groups.
However, in many cases, we prove that the given map has the smallest degree among all maps of degree
d ≥ 2 that realize a given automorphism group. We say such a map is of minimal degree for that group.
Explicit constructions and details are given in Theorems 1.6 and 1.7.

The methods used previously to construct dynamical systems with nontrivial automorphisms and to
study automorphism loci depend on characteristic 0 in fundamental ways, opening the possibility that
new phenomena emerge when we change the base field to a finite subfield of F̄p. We investigate these
new phenomena, emphasizing how our methods and results contrast with characteristic 0.

To provide context, we briefly describe some of what is known about Ad in the complex case. As
mentioned earlier, the automorphism group is a finite subgroup of PGL2, so the classification of such
subgroups is important. In characteristic 0, the finite subgroups of PGL2 were classified classically. For
a modern exposition, see [14].

Notation 1.2. We set notation for referring to various groups.

• Let 1 denote the trivial group.
• Let Cn denote the cyclic group of n elements, for each n ≥ 2.
• Let D2n denote the dihedral group of 2n elements, for each n ≥ 2.
• Let A4 denote the tetrahedral group.
• Let S4 denote the octahedral group.
• Let A5 denote the icosahedral group.

The above are a complete list of finite subgroups of PGL2(C), up to conjugacy. The general problem
of which subgroups of PGL2(C) can be realized as an automorphism group for some f ∈ Ratd relies on
tools from the classical invariant theory of finite groups; see [4], as well as partial results found in a
number of other places, such as [14].

The problem of determining the locus Ad(C) has been studied in a number of articles [9, 10, 12,
13, 20]. The automorphism locus Ad(C) forms a Zariski-closed proper subset of Md(C). In fact, for
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d> 2, the automorphism locus coincides with the singular locus of Md(C) [12]. The case d = 2 stands
in contrast: Milnor showed that M2(C) is isomorphic as a variety to the affine plane A2(C), which is
smooth, and that the automorphism locus A2(C) is a cuspidal cubic curve [13]. The points of A2(C)
all have an automorphism group isomorphic to C2, except at the cusp, where the automorphism group
is isomorphic to the symmetric group S3. The descriptions of A3(C) and A4(C) are more recent and
more complicated [10, 20]. The best results currently available for Ad(C) with d ≥ 5 mostly focus on
the dimensions of the various components [12].

We first study which automorphism groups are realizable. Among the finite subgroups � of PGL2,
which arise as automorphism groups of rational maps? We call this question the realizability problem
for �. If � is realizable, so are its conjugates; thus, it suffices to look at one representative per conjugacy
class. Our next theorems construct solutions to the realizability problem for every finite subgroup � of
PGL2(F̄p).

We first review what is known in the complex case. Miasnikov, Stout, and Williams [12] give the
dimensions of the components ofAd(C) associated with each finite� ⊂ PGL2(C). They do not, however,
give any explicit realizations or explore arithmetic questions, such as the necessary field of definition.
The strongest results in this direction come from de Faria and Hutz [4]. They prove that every finite
subgroup of PGL2(C) is realizable as a subgroup of the automorphism group infinitely often (allowing
the degree of the map to increase). This construction is explicit and relies on the classical invariant
theory of finite groups.

In characteristic p> 0, much less is known. While the classification of finite subgroups of PGL2(F̄p)
is classical, the unpublished version by Faber [7] in modern notation is the most readable. For each prime
p, each conjugacy class for each subgroup supplies a case of the realizability problem. We summarize
the classification in Proposition 1.5.

Definition 1.3. A finite subgroup of PGL2(F̄p) is called p-regular if p does not divide the group order;
otherwise, it is called p-irregular.

Definition 1.4. For each power q of a prime p, the Borel group B(Fq) is the group of upper triangular
matrices in PGL2(Fq). A p-semi-elementary group is one that is the semi-direct product of a Sylow
p-subgroup of order p and a cyclic subgroup.

Proposition 1.5 (Faber [7]). Let p be a prime. Each finite subgroup � of PGL2(F̄p) belongs to one of
the following isomorphism types:

• The identity group 1;
• The cyclic group Cn, for each n ≥ 2;
• The dihedral group D2n, for each n ≥ 2;
• The tetrahedral group A4;
• The icosahedral group A5;
• The octahedral group S4;
• The group PGL2(Fq), for some power q of p;
• The group PSL2(Fq), for some power q of p;
• A p-semi-elementary group conjugate to a subgroup of the Borel group B(Fq), for some power

q of p.

Except for p-semi-elementary groups, each possible isomorphism type occurs as at most one
conjugacy class in PGL2(F̄p).

For each power q of p, each subgroup of B(Fq) is of the form:

{z �→ αz + β : α ∈μ, β ∈�},
whereμ is a subgroup of F×

q of some order n, and� is a subgroup of F+
q such thatμ(�) ⊆�. A subgroup

of PGL2(Fq) is p-semi-elementary if and only if it is conjugate to a subgroup of B(Fq) for which � �= 0.
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Not every group named in Proposition 1.5 appears for every prime, and for some small primes,
there are accidental isomorphisms between some of the possible groups. The precise classification of
subgroups of PGL2(F̄p) up to conjugacy is given in the Appendix.

The next two theorems resolve the realizability question for p-irregular and p-regular subgroups,
respectively. Together, the theorems show by explicit constructions that every finite subgroup of PGL2

arises as an automorphism group (Theorem 1.1). For certain groups, we show that our constructions
furnish maps which are of minimal degree among all maps with the prescribed automorphism group.

Theorem 1.6. Let p be a prime and let q be a power of p. Let � be a finite p-irregular subgroup of
PGL2(F̄p). Then there exists a rational map f :P1(F̄p) → P1(F̄p) with Aut(f ) = �. In particular, such a
map f can be constructed for each � as follows.

(1) Let f (z) = zq. Then Aut(f ) = PGL2(Fq), and f is of minimal degree for PGL2(Fq).
(2) Let � be a p-semi-elementary subgroup with associated additive group � and integer n in the

form of Proposition 1.5. Then

f (z) =
∏
λ∈�

(z − λ)n+1 + z

satisfies Aut(f ) = �. In particular, if �= Fq, then

f (z) = (zq − z)n+1 + z.

(3) If p> 2, then PSL2(Fq) is distinct from PGL2(Fq). In this case, there exists a map f such that

Aut(f ) = PSL2(Fq).

We construct such an f of degree 1
2
(q3 − 2q2 + q + 2). Consider the two fundamental invariants

of SL2(Fq):

u = xqy − xyq,

c1 =
q∑

n=0

x(q−1)(q−n)y(q−1)n.

Also set

a = q(q − 3) + 4

2
, b = q − 1

2
.

Then take f to be the dynamical system that arises from the Doyle–McMullen construction (2.1)
applied to F = cb

1 and G = ua; that is,

f (x, y) =
[

xcb
1 + ∂ua

∂y
: ycb

1 − ∂ua

∂x

]
.

This f is of minimal degree for PSL2(Fq).
(4) Let p = 2, and let n ≥ 3 be odd. Then f (z) = 1/z2n−1 has Aut(f ) ∼= D2n.
(5) Let p = 3. There is a unique p-irregular subgroup of PGL2(F̄3) isomorphic to A5, up to conju-

gacy. There exists a map f such that Aut(f ) ∼= A5. Specifically, there is a representation of A5 in
PGL2(F̄3) with fundamental invariants:

u1 = x10 + iy10,

u2 = x11y + (i + 2)x6y6 − ixy11,

where i ∈ F̄3 satisfies i2 + 1 = 0. Let f be the dynamical system arising from the Doyle–
McMullen construction (2.1) applied to F = u2

1 and G = u1u2, that is,

f (x, y) =
[

xu2
1 + ∂(u1u2)

∂y
: yu2

1 − ∂(u1u2)

∂x

]
.

Then f has degree 21 and is of minimal degree for A5 in PGL2(F̄3).
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Theorem 1.7. Let p be a prime and q a power of p. Let � be a p-regular subgroup of PGL2(Fq). Then
there exists a rational map f :P1(F̄p) → P1(F̄p) with automorphism group exactly �. In particular, such
a map f can be constructed for each � as follows.

(1) The map f (z) = z2 + z has Aut(f ) = 1, and f(z) is trivially of minimal degree for � = 1.
(2) Let n ≥ 2 be relatively prime to p. Then the map f (z) = 1

zn−1 + z has Aut(f ) ∼= Cn. Furthermore,
this map is of minimal degree for Cn.

(3) Let p> 2 be prime and let n ≥ 2 be coprime to p. The realizability problem for D2n over
PGL2(F̄p) is solvable through one of the following constructions:

• If n �≡ −1 mod p, then the map f (z) = zn+1 has exact automorphism group D2n.
• If n �≡ 1 mod p and n> 2, then the map f (z) = 1

zn−1 has exact automorphism group D2n. This
example is of minimal degree for D2n.

• If n = 2, then for every a ∈ F̄p not in the exceptional set {−3, −1, 0, 1}, the map

f (z) = z · z2 + a

az2 + 1

has Aut(f ) ∼= D4, and f(z) is of minimal degree for D4.

• The tetrahedral group A4 is realizable as an automorphism group of a degree 3 map over F̄p,
for all p ≥ 5, and 3 is the minimal degree for A4.

• The octahedral group S4 is realizable as an automorphism group over F̄p, for all p ≥ 5.
• The icosahedral group A5 is realizable as an automorphism group over F̄p, for all p ≥ 7.

The invariant theory constructions used in de Faria and Hutz [4] go through in the p-regular case
but remain unknown in the modular case (where the characteristic p divides the order of the group).
Consequently, the methods used for our realizability results are a combination of adaptations of the
invariant theory constructions and ad hoc computations. See the discussion at the beginning of Section 2.

For the p-regular case in Theorem 1.7, we take maps in characteristic 0 with the appropriate auto-
morphism group and reduce modulo p; see Section 2.2. The p-irregular case in Theorem 1.6 is more
elaborate. The work of Klein [11] and Doyle and McMullen [6] shows that the problem of creating maps
over C with prescribed automorphism group can be framed in terms of classical invariant theory. In the
case of characteristic p and a p-irregular group of automorphisms, we use modular invariant theory in
place of classical invariant theory. Magma can calculate modular invariants [3]. By generating lots of
invariants, we obtained a variety of maps which were candidates for realizing the subgroup in question.
Throughout, there is the new difficulty that many maps with some prescribed automorphisms in fact
have extra automorphisms; that is, the automorphism group is all of PGL2(Fq). We used the automor-
phism group calculation algorithm of Faber–Manes–Viray [8], which is implemented in Sage [19], to
check exactness of the automorphism groups. Examining the computational evidence, we were able to
conjecture general forms for solutions and prove them. See Section 2.1.

We next study the locus of maps inA2(F̄p) with a nontrivial automorphism. For a given point x ∈Md,
we freely write Aut(x) ∼= G to mean that any map representing x has automorphism group isomorphic
to G. Many subgroups of PGL2 arise in just one conjugacy class, so such a description often suffices to
describe the conjugacy class Aut(x).

To state the result, we use the explicit isomorphism M2 →A2 given by f �→ (σ1, σ2), where σ1 and σ2

are the first two elementary symmetric polynomials evaluated at the multipliers of the fixed points of f .
This isomorphism was established over C by Milnor [13] and extended to an isomorphism of schemes
over Spec Z by Silverman [15, Theorem 5.1].

Theorem 1.8. The geometry of the automorphism locus A2(F̄p) depends on the prime p, in the
following way.
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Figure 1. Geometry of A2(F̄p).

(1) : The automorphism locus A2(F̄2) is the line σ1 = 0. For every point x = (σ1, σ2) except
(0, 0) and (0, 1), we have Aut(x) ∼= C2. For x = (0, 0), we have Aut(x) ∼= S3. For x = (0, 1) we
have that Aut(x) is trivial as a subgroup of PGL2 and isomorphic to α2

∼= F̄2[t]/(t2) as a group
scheme.

(2) : The automorphism locus A2(F̄3) is the cuspidal cubic curve:

2σ 3
1 + σ 2

1 σ2 − σ 2
1 − σ 2

2 − 2σ1σ2 = 0.

Every point x has Aut(x) ∼= C2.
(3) : The automorphism locus A2(F̄p) is the cuspidal cubic curve:

2σ 3
1 + σ 2

1 σ2 − σ 2
1 − 4σ 2

2 − 8σ1σ2 + 12σ1 + 12σ2 − 36 = 0.

Every point x except the cusp has Aut(x) ∼= C2, and when x is the cusp, we have Aut(x) ∼= S3.

We imagine this theorem in terms of the informal picture in Figure 1. As p varies, we obtain a
family of curves. Automorphism groups that were possible in characteristic 0 can collapse when we
reduce modulo certain small primes. This kind of behavior is typical in arithmetic geometry. More
intriguing is, that without considering group schemes, the theorem over C that Ad is Zariski-closed
fails in characteristic p. We can illustrate the phenomenon by the (dehomogenized) one-parameter
family in Rat2(F̄2) defined by:

fc(z) = z2 + cz, c ∈ F̄2.

We show in Section 4.2 that this family of rational maps forms a line in the moduli space and that the map
z �→ z + c − 1 is an automorphism of fc. This automorphism is nontrivial, unless c = 1, in which case
the automorphism degenerates to the identity map. The reader can readily check that Aut(f1) is trivial as
a subgroup of PGL2. In Section 4.2, we compute the automorphism group scheme [8] of f1 and find that
it is the well-known group scheme α2. While the group of α2 is trivial, its group scheme structure is not.

Question 1.9. As the map fc varies, so does the nontrivial automorphism it carries. Can we create a
moduli space that parametrizes rational maps with a choice of automorphism, and would the analog of
Ad in this moduli space be a Zariski-closed set? (This line of inquiry was suggested to us by Joseph
Silverman.)

The structure of the article is as follows. In Section 2, we study the realizability problem and prove
Theorems 1.6 and 1.7. This section starts with an introduction to the methods and proceeds through the
cases of p-irregular followed by p-regular. In Section 3, we adapt the structure theorem of Doyle and
McMullen [6] to the setting of modular invariant theory, and we prove that our example for PSL2(Fq)
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is of minimal degree, Theorem 1.6(3). In Section 4, we study the structure of Ad ⊂Md and prove
Theorem 1.8.

The authors thank the Institute for Computational and Experimental Mathematical Research
(ICERM) for hosting the summer Research Experience for Undergraduates (REU) program in 2019,
where the majority of this work was completed. We also thank Xander Faber and Joseph Silverman for
helpful conversations and an anonymous referee for many helpful and detailed comments.

2. Realizability

In considering the realizability problem, our constructions are best understood in contrast to the reso-
lution of the realizability problem over C, which we sketch. This story spans centuries: it starts with
Klein’s beautiful lectures on the icosahedron [11], is continued in Doyle and McMullen’s work on the
quintic [6], and concludes in the recent paper by de Faria and Hutz [4].

If f is a solution for the realizability problem for �, then for any σ ∈ PGL2, the conjugated map
σ−1 ◦ f ◦ σ is a solution for σ−1�σ . So, to solve the realizability problem in general, we need only
consider one representative of each conjugacy class of � in PGL2. The finite subgroups of PGL2(C)
were classified up to conjugacy by Klein [11]; a more modern version can be found in Silverman [14].
The finite subgroups of PGL2(C) belong to one of the following isomorphism types:

• a cyclic group Cn;
• a dihedral group D2n;
• the tetrahedral group A4;
• the octahedral group S4;
• the icosahedral group A5.

Each isomorphism type arises as just one conjugacy class in PGL2(C).
Klein’s strategy for creating maps with symmetry rested on what is now known as the classical

invariant theory of finite groups. Roughly, classical invariant theory is an algorithm which takes as
input a C-vector space V and a group representation � ↪→ GL(V) and outputs information about the
homogeneous elements of the polynomial algebra C[V] which are fixed by all the transformations in �.
In other words, classical invariant theory calculates the set of homogeneous F ∈C[V] such that for all
γ ∈ �, we have

F ◦ γ = F.

The set of such F forms a ring, called the ring of polynomial invariants, and is denoted C[V]�. A basic
method used in classical invariant theory to furnish polynomial invariants is to use the Reynolds operator,
which is the projection C[V] →C[V]� defined by:

F �→ 1

|�|
∑
γ∈�

(F ◦ γ ).

The first interesting example takes V =C2 and� to be the representation of C2, that maps the nonidentity
element to

[
0 1
1 0

]
. Then, C[V]� is the ring of homogeneous symmetric polynomials in two variables.

Klein found, and the reader may directly check, that given a homogeneous polynomial in two variables
invariant under the action of �, i.e., G ∈C[V]�, the map f : P1 → P1 defined in coordinates by

[x : y] �→
[
∂G

∂y
: − ∂G

∂x

]

satisfies � ⊆ Aut(f ). Doyle and McMullen derived another more general construction, again using clas-
sical invariant theory, which creates maps with automorphism group containing� [6]. Specifically, given
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two invariants F,G with degrees satisfying deg (G) = deg (F) + 2 (or F = 0), the map is given by:

[x : y] �→
[

xF + ∂G

∂y
: yF − ∂G

∂x

]
. (2.1)

They also prove analytically that every dynamical system with automorphism group containing � arises
from their construction. With this machine for creating dynamical systems with symmetries, the only
concern is that we might not exactly have � = Aut(f ). To be sure we have a solution to the realizability
problem, we must check against the existence of extra automorphisms. De Faria and Hutz [4] used this
machinery to solve the realizability problem over C as well as to produce infinite families where every
member of the family has automorphism group containing �.

Now we replace the base field C by F̄p and explain how the above story morphs at each step:

• As shown by the classification of Faber [7], there are many more conjugacy classes to test.
• If � is p-regular, the same formula for the Reynolds operator works, and much of the classical

theory over C carries over with minor modification. But if � is p-irregular, the Reynolds opera-
tor is unavailable, and it can be computationally more difficult to locate polynomial invariants.
This suggests the basic dichotomy present in modern commutative algebra between modu-
lar invariant theory (the case where p divides |�|) and its complement nonmodular invariant
theory. For an excellent reference that emphasizes this dichotomy, see [18]. Our investigation
opens a new field of application for modular invariant theory. In particular, any work on the real-
izability problem in higher dimensions will probably require a deeper description of modular
invariants than is presently available.

• The Klein and Doyle–McMullen constructions, which are the bridge from invariant theory
to dynamics, may fail for various reasons in characteristic p. For instance, if we attempt the
Doyle–McMullen construction with F(x, y) = 0, G(x, y) = xp + yp, we obtain the nonsense map
[0 : 0]. Evidently, some constraints on degree are necessary. Even so, if the construction actually
produces a valid map of degree at least 2, then it is easy to check that � ⊆ Aut(f ).

The converse—that all maps with � ⊆ Aut(f ) arise from the Doyle–McMullen
construction—is much harder to see, and some subtleties particular to positive charac-
teristic arise. We build up the theory of this correspondence in Section 3, with our analogue
of the Doyle–McMullen correspondence presented as Theorem 3.2.

• Over C, the central task is writing down an example f such that � ⊆ Aut(f ), and the problem of
extra automorphisms has been addressed for a few special cases. Over F̄p, the problem of extra
automorphisms is in some sense the whole point. We will see that the automorphism group of
f (z) = zq is PGL2(Fq), and every finite subgroup � of PGL2(F̄p) is contained in PGL2(Fq) for a
large enough choice of q. For each prime power q, this gives us a single example f such that
� ⊆ Aut(f ) for every finite subgroup � of PGL2(Fq). So, the difficulty arises in how to create
maps f with some prescribed symmetries without picking up lots of others.

The following essential proposition, due to Faber, Manes and Viray, links the existence of automor-
phisms of certain order to the degree of the map.

Proposition 2.1 ([8], Proof of Proposition 2.4). Let p be a prime, let n ∈N, and let f :P1 → P1 be a
rational map over F̄p admitting an automorphism of order n. Then,

deg (f ) ≡ −1, 0, 1 mod n. (2.2)

If n = p, then up to conjugation, we further have f (z) =ψ(zp − z) + z for some rational map ψ , and

deg (f ) ≡ 0, 1 mod p. (2.3)
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2.1. Realizability of p-irregular subgroups of PGL2(Fq)

2.1.1. Realizing PGL2(Fq)
We now show that, for any power q of a prime p, the group PGL2(Fq) is realizable over Fp.

Proof of Theorem 1.6 part 1. Let f (z) = zq. For any rational map g ∈ F̄q(z), we have g(zq) = g(z)q if
and only if g is defined over Fq. Restricting g to be degree 1, we find that Aut(f ) = PGL2(Fq). We further
claim that any map with degree at least 2 and with automorphism group PGL2(Fq) has degree at least
q. To see this, let g be a such a map. Up to conjugation by an element of PGL2(Fq), we may assume
that g has an affine fixed point. Let a ∈ Fq be an affine fixed point of g. For every b ∈ Fq, we have an
automorphism z �→ z + b of g, so every point of the form a + b where b ∈ Fq is fixed by g. Since g has
at least q fixed points, we deduce that deg g ≥ q − 1. Further, since g has an automorphism of order p,
we know that deg g ≡ 0 or deg g ≡ 1 (mod p), by (2.3). We conclude that deg g ≥ q.

Somewhat surprisingly, for any prime power q, the map 1
zq also has automorphism group isomorphic

to PGL2(Fq), because zq is conjugate to 1
zq . In fact, it is a quadratic twist.

Proposition 2.2. For any prime power q, let ζq+1 be a primitive (q + 1)-th root of unity, and let τ =(
1 ζq+1

ζq+1 1

)
. Then,τ ∈ PGL2(Fq2 ) and conjugation by τ maps f (z) = zq to f τ (z) = 1

zq .

Proof. Checking the conjugation is a simple calculation, and ζq+1 is in a quadratic extension of Fq

because F∗
q2 is cyclic of order q2 − 1 = (q − 1)(q + 1).

It turns out that there are many elements of PGL2(Fp2 ) that conjugate zq to 1
zq . This can be explained

by the following result.

Proposition 2.3. Let f , g ∈ Ratd be in the same conjugacy class. Then the set Conj(f , g) of all conjuga-
tions from f to g is a right coset of Aut(f ).

Proof. Let τ ∈ Conj(f , g). We must show that Aut(f ) ◦ τ = Conj(f , g). For the first containment, let
β ∈ Aut(f ). Then f β◦τ = (f β)τ = f τ = g, and so β ◦ τ ∈ Conj(f , g).

For the reverse containment, it suffices to show that for all τ , β ∈ Conj(f , g), we have τ ◦ β−1 ∈ Aut(f ).
This holds, since f τ◦β

−1 = (f τ )β
−1 = gβ

−1 = f .

2.1.2. Realizing p-semi-elementary subgroups
Proof of Theorem 1.6 part (2). Let � be a p-semi-elementary subgroup of PGL2(Fq). For the purposes
of the realizability problem, we can replace � by a conjugate. Then by the classification of Faber [7], as
presented in Proposition 1.5, we can assume that � has the following form:

• The group� is a subgroup of the Borel group; that is, all its elements are of the form z �→ az + b.
• For any integer n ≥ 1, let μn denote the multiplicative group of n-th roots of unity in F̄p. There

is an additive group �⊆ Fq and an integer n ≥ 1 such that
� = {z �→ az + b : a ∈μn, b ∈�}.

• Multiplication by elements of μn maps � into �.

Let
f (z) =

∏
λ∈�

(z − λ)n+1 + z.

Then we claim Aut(f ) = �. Say τ ∈ �. Then τ is given by τ (z) = az + b for some a, b where b ∈� and
a ∈μn. The following sequence of equalities is justified by re-indexing the product twice:
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f (τ (z)) =
∏
λ∈�

(az + b − λ)n+1 + az + b

=
∏
λ∈�

(az − λ)n+1 + az + b

= an+1
∏
λ∈�

(z − λ/a)n+1 + az + b

= a
∏
λ∈�

(z − λ/a)n+1 + az + b

= a
∏
λ∈�

(z − λ)n+1 + az + b

= τ (f (z)).

Thus, � ⊆ Aut(f ). Now we prove the reverse containment. Suppose that τ ∈ Aut(f ). The fixed points of
f are �∪ {∞}. The multiplier at ∞ is 0 because ∞ is a critical point, and the multiplier at each point
of � is 1 (since n ≥ 1). Then τ must fix ∞, since it is the only fixed point of f with multiplier 0, so τ is
of the form z �→ az + b. Now we must show that b is in � and that a is in μn. We consider the equality
of polynomials given by f (τ (z)) = τ (f (z)):

f (az + b) = af (z) + b.

The leading coefficient on the left side is an+1, and the leading coefficient on the right is a, so a is an
n-th root of unity. Expanding the equality of polynomials,

a
∏
λ∈�

(z + b/a − λ/a)n+1 + az + b = a
∏
λ∈�

(z − λ)n+1 + az + b.

Simplifying, we have ∏
λ∈�

(z + b/a − λ/a)n+1 =
∏
λ∈�

(z − λ)n+1.

Then z �→ az + b must map � to � bijectively. The map z �→ z/a is also bijective, so composing, we
find that z �→ z + b maps � to �. Therefore, b ∈�, completing the proof.

2.1.3. Realizing PSL2(Fq)
We now show how to realize PSL2(Fq), where q is a power of an odd prime p. We assume p> 2 to ensure
that PSL2(Fq) �= PGL2(Fq).

Proof of Theorem 1.6 part (3). We begin with the fundamental invariants of PSL2(Fq):

u = xqy − xyq,

c1 =
q∑

n=0

x(q−1)(q−n)y(q−1)n,

which have degree q + 1 and q2 − q, respectively (see, for instance, [2]).
The Doyle–McMullen construction [6] takes two invariant homogeneous polynomials F and G of

some � ⊆ PGL2 and outputs a map with � ⊆ Aut(f ). We generalize this construction to characteristic
p> 0 in Theorem 3.2. For invariants F and G, the corresponding map on projective space is f = [xF +
Gy : yF − Gx], where Gy and Gx are the partial derivatives.

https://doi.org/10.1017/S0017089522000222 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000222


232 J. Cai et al.

Applying this construction to G = ua and F = cb
1, with a and b as given in the statement of the theorem

and using that a ≡ 1 mod p, we obtain the map:

f (x, y) =
[

x

(
q∑

n=0

x(q−1)(q−n)y(q−1)n

)b

+ (xqy − xyq)a−1xq:

y

(
q∑

n=0

x(q−1)(q−n)y(q−1)n

)b

− (xqy − xyq)a−1yq

]
.

Next, we calculate the fixed points of f :

f (x, y) = [x : y]

⇐⇒ y

⎛
⎝x

(
q∑

n=0

x(q−1)(q−n)y(q−1)n

)b

+ (xqy − xyq)a−1xq

⎞
⎠

= x

⎛
⎝y

(
q∑

n=0

x(q−1)(q−n)y(q−1)n

)b

+ (xqy − xyq)a−1yq

⎞
⎠

⇐⇒ (xqy − xyq)a−1xqy = (xqy − xyq)a−1xyq

⇐⇒ (xqy − xyq)a−1(xqy − xyq) = (xqy − xyq)a = 0.

Setting y = 1, we see that the fixed points are the roots of (xq − x)a, or the elements of Fq, each with
multiplicity a. Likewise, y = 0 is a solution, so infinity is a fixed point with multiplicity a.

We know that PSL2(Fq) ⊆ Aut(f ) by construction. It remains to show equality. Using the assumption
p> 2, let α be any non-square element of Fq. Then

(
α 0
0 1

)
corresponds to the map τ (x, y) = [αx : y]. We

claim that τ �∈ Aut(f ). Indeed, we compute

f τ =
[

1

α

⎛
⎝αx

(
q∑

n=0

(αx)(q−1)(q−n)y(q−1)n

)b

+ ((αx)qy − (αx)yq)a−1((αx)q)

⎞
⎠ :

y

(
q∑

n=0

(αx)(q−1)(q−n)y(q−1)n)

)b

+ ((αx)qy − (αx)yq)a−1yq

]

=
[

x

(
q∑

n=0

x(q−1)(q−n)y(q−1)n

)b

+ αa−1(xqy − xyq)a−1xq:

y

(
q∑

n=0

x(q−1)(q−n)y(q−1)n

)b

+ αa−1(xqy − xyq)a−1yq

]
.

Thus, we see that f τ = f ⇐⇒ αa−1 = 1. Since a = q(q−3)+4
2

,

a − 1 = q(q − 3) + 2

2
= (q − 1)(q − 2)

2

=⇒ αa−1 = (α
q−1

2 )q−2 = ( − 1)q−2 = −1.

Therefore, f τ �= f .
Since f has q + 1 fixed points, we have |Aut(f )| ≤ (q + 1)q(q − 1). Further, since z �→ αz induces

a self-map of Fix(f ) but is not an automorphism of f , the inequality is strict. Since Aut(f ) contains
PSL2(Fq), we have

(q + 1)q(q − 1)

2
≤ |Aut(f )|< (q + 1)q(q − 1). (2.4)
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Since Aut(f ) contains PSL2(Fq), it is a p-irregular group that does not stabilize any subset of P1(F̄q) of
cardinality 1 or 2. By the classification of finite subgroups (see the Appendix), if p �= 3, the only such
groups are isomorphic to PGL2(Fq′) or PSL2(Fq′ ) for some power q′ ≥ q of p, and among these, the only
isomorphism type satisfying (2.4) is PSL2(Fq). If p = 3, the same argument applies, but we must also
rule out the isomorphism type A5. But the order of A5 is 60, which does not satisfy (2.4) for any power
q of 3.

The final claims to verify are that

deg f = 1

2
(q3 − 2q2 + q + 2), (2.5)

and that this f is of minimal degree for PSL2(Fq). In Theorem 3.3, we show that any map f with
deg f > 1 and Aut(f ) ∼= PSL2(Fq) has degree at least 1

2
(q3 − 2q2 + q + 2). The formula for f shows that

deg f ≤ 1
2
(q3 − 2q2 + q + 2). The set of fixed points has cardinality q + 1, so deg f > 1, proving

(2.5).

Theorem 1.6 part (3) is rather cumbersome, and it is difficult to understand the maps arising from the
invariants. In the case where q = p, we have the following simplified version.

Theorem 2.4. Let p> 2 be prime, let m = 1
2
p2 − 3

2
p + 2, and let c �= 0, and let

ψ(z) = czm

(zp−1 + 1)
p−1

2 + czm−1
.

Then the automorphism group of f (z) =ψ(zp − z) + z is exactly PSL2(Fp).

Proof. We check that the generators of PSL2(Fp), which are
(

1 1
0 1

)
,
(

0 1
−1 0

)
,
(
α 0
0 1

)
, where α

is a quadratic residue in Fp, are all automorphisms of f . We also need to show that
(
α 0
0 1

)
is not an

automorphism of f when α is a non-residue.

For
(

1 1
0 1

)
, we compute

f (z + 1) − 1 =ψ((z + 1)p − (z + 1)) + (z + 1) − 1 =ψ(zp − z) + z = f .

We next check maps of the form
(
α 0
0 1

)
. This is an automorphism if and only if f (αz) = αf (z). This

holds if and only if

0 = f (αz) − αf (z) = αψ(zp − z) −ψ(α(zp − z)). (2.6)

Making the substitution w = zp − z, we see equation (2.6) holds if and only if

0 = αψ(w) −ψ(αw) = αcwm

(wp−1 + 1)
p−1

2 + cwm−1
− cαmwm

(αp−1wp−1 + 1)
p−1

2 + cαm−1wm−1

= (cαwm)

(
1

(wp−1 + 1)
p−1

2 + cwm−1
− αm−1

(αp−1wp−1 + 1)
p−1

2 + cαm−1wm−1

)
.

Keeping in mind that αp−1 = 1, this is equivalent to

0 = (αp−1wp−1 + 1)
p−1

2 + cαm−1wm−1 − αm−1(wp−1 + 1)
p−1

2 − αm−1cwm−1

= (1 − αm−1)(wp−1 + 1)
p−1

2 .

Thus,
(
α 0
0 1

)
is an automorphism of f if and only if αm−1 = 1. We have

αm−1 = α
(p−1)(p−2)

2
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and the order of α is Fp must be a divisor of p − 1. So αm−1 = 1 if and only if α p−1
2 = 1, which, by Euler’s

criterion, is equivalent to α being a quadratic residue.

It remains to check that
(

0 1
−1 0

)
is an automorphism. To simplify the computations, we introduce

the variables x = zp − z, y = zp+1. We need −1
f (z)

− f ( −1
z

) = 0. We have

−1

f (z)
− f

(−1

z

)
= −1

ψ(zp − z) + z
−ψ

(
− 1

zp
+ 1

z

)
+ 1

z
= −1

ψ(x) + z
−ψ

(
x

y

)
+ 1

z
,

which vanishes if and only if

z(ψ(x) + z)ψ

(
x

y

)
−ψ(x) = 0.

Now

z(ψ(x) + z)ψ

(
x

y

)
−ψ(x)

= z

(
cxm

(xp−1 + 1)
p−1

2 + cxm−1
+ z

)( c( x
y
)m

(( x
y
)p−1 + 1)

p−1
2 + c( x

y
)m−1

)
− cxm

(xp−1 + 1)
p−1

2 + cxm−1

= z

(
cxm

(xp−1 + 1)
p−1

2 + cxm−1
+ z

)(
cxm

ym(( x
y
)p−1 + 1)

p−1
2 + cyxm−1

)
− cxm

(xp−1 + 1)
p−1

2 + cxm−1
,

which vanishes precisely with

cxm

⎡
⎣cxmz + z2

(
(xp−1 + 1)

p−1
2 + cxm−1

)
− ym

((
x

y

)p−1

+ 1

) p−1
2

− cyxm−1

⎤
⎦

= cxm
[
cxm−1(zx + z2 − y) + z2

(
(xp−1 + 1)

p−1
2

)
− y

−p+3
2 (xp−1 + yp−1)

p−1
2

]
. (2.7)

Now we use the following two identities:

y = zx + z2

xp−1 + yp−1 = zp−1(xp−1 + 1).

The first identity is trivial, and the second follows from the expansion:

xp−1 ≡ zp(p−1) + z(p−1)(p−1) + z(p−2)(p−1) + z(p−3)(p−1) + · · · + zp−1 (mod p),

using that
(

p−1
k

)≡ ( − 1)k (mod p) for 1 ≤ k ≤ p − 1. With these identities, (2.7) becomes

cxm
[
z2
(

(xp−1 + 1)
p−1

2

)
− y

−p+3
2 z

(p−1)2

2 (xp−1 + 1)
p−1

2

]
= cxm(xp−1 + 1)

p−1
2

[
z2 − z

(p+1)(−p+3)
2 + (p−1)2

2

]
= cxm(xp−1 + 1)

p−1
2
[
z2 − z2

]= 0.

Thus,
(

0 1
−1 0

)
is indeed an automorphism.

We have so far shown

PSL2(Fp) ⊆ Aut(f ) � PGL2(Fq).

To show that Aut(f ) is not equal to any group strictly containing PSL2(Fp), we argue as in the proof of
Theorem 1.6 part 3. The map f has p + 1 fixed points, as can be seen from the equation:

f (z) =ψ(zp − z) + z = z.
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There are (p + 1)p(p − 1) elements of PGL2(F̄p) for which Fix(f ) is an invariant set, and we showed
that at least one of these elements is not an automorphism of f . The argument about group orders in the
proof of Theorem 1.6 part 3 then shows that Aut(f ) = PSL2(Fp).

From the earlier discussion of maps of the form ψ(zp − z) + z, we can easily determine the multiplier
spectrum of the above map, which shows that varying c results in a one-dimensional family of maps
realizing PSL2(Fp) in the moduli space.

2.1.4. p-irregular dihedral groups
We now prove that any p-irregular dihedral group D2n is realizable. These groups occur only when p = 2
and n ≥ 3 is odd.

Proof of Theorem 1.6 part 4. Let

f (z) = 1

z2n−1
.

We claim that Aut(f ) ∼= D2n. By direct computation, the automorphism group of f includes z �→ 1/z and
z �→ ζnz, and these transformations generate a dihedral group of order 2n. We now show that there are
no extra automorphisms by showing that f (z) has at most 2n automorphisms. First, notice that

Fix(f ) = {z ∈ F̄2 : z2n = 1},
which has cardinality n. Second, we claim that the set of points with a unique preimage is {0, ∞}. It is
clear that f −1(0) = ∞ and f −1(∞) = 0. Now let c �= 0, ∞. The affine preimages of c are the values of z
such that f (z) = c, or equivalently

cz2n−1 = 1.

Since c �= 0, this polynomial is of degree 2n − 1 and is separable because 2n − 1 is odd, so the roots are
distinct. Each automorphism of f is determined by where it sends 0, 1, and ∞. There are at most two
possible images for 0, and n possible images for 1, so there are at most 2n automorphisms of f .

2.1.5. The icosahedral subgroup of PGL2(F̄3).
The final construction needed for Theorem 1.6 is the case of the icosahedral subgroup A5 in PGL2(F̄3).
This is a finite calculation that is part of the dynamical systems library in Sage [19].

Proof of Theorem 1.6 part (5). Let f be the dynamical system in the theorem statement. Using the
algorithm in Sage to compute automorphism groups of dynamical systems, we computed that Aut(f ) ∼=
A5 [19]. We also compute in Sage that the resultant of f is nonzero, so deg f = 21. We prove the claim
that f is of minimal degree for A5 in Theorem 3.4.

2.2. Realizability of p-regular finite subgroups of PGL2(F̄p)

In this section, we construct solutions to the realizability problem for every p-regular finite subgroup �
of PGL2(F̄p). Each group that appears is trivial, cyclic, dihedral, tetrahedral, octahedral, or icosahedral,
and each isomorphism type appears as a single conjugacy class; see the Appendix for the classification.

2.2.1. The trivial group
We now prove Theorem 1.7 part (1), which says that the trivial group 1 is realizable.

Proof of Theorem 1.7 part (1). Let f (z) = z2 + z. By direct calculation, we have Fix(f ) = {0, ∞}. The
multiplier at 0 is 1, and the multiplier at ∞ is 0. Thus any automorphism of f must fix 0 and ∞, so
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the only possible automorphisms are of the form z �→ αz, where α �= 0. Given such an automorphism,
f (αz) = αf (z) implies α2 = α, so α = 1. Thus, Aut(f ) = 1.

Remark 2.5. This is a special case of the argument used to realize p-semi-elementary groups in
Theorem 1.6 part (2), taking the multiplicative group μn = 1 and the additive group�= 0. In Section 4,
we further show that a generic degree-2 map f has no nontrivial automorphisms.

2.2.2. Cyclic groups
In this section, we prove Theorem 1.7 part (2), that every p-regular cyclic group Cn arises as the exact
automorphism group of a self-map of P1(F̄p). The p-regularity condition means that n is coprime with p.

Silverman [14] shows that, in characteristic 0, a map f has Cn ⊆ Aut(f ) if and only if f is of the form
f (z) = zψ(zn) for some rational functionψ . The argument is valid as long as primitive n-th roots of unity
exist, which is true in characteristic p when gcd (p, n) = 1.

Proof of Theorem 1.7 part 2. Let n be coprime with p, and let f (z) = 1
zn−1 + z.

First, notice that the map z �→ ζnz is an order n automorphism. For the other containment, notice
that ∞ is the unique fixed point of f . The unique non-fixed preimage of ∞ is 0. Any automorphism
of f , therefore, must fix ∞ and 0 and so is of the form α(z) = az for some constant a. We compute
f α = 1

anzn−1 + z, so to get an automorphism, we must have that a is an n-th root of unity.
It remains to show that no map of smaller degree has Cn as its automorphism group. By Silverman

[14], if a map f has an order n automorphism with n coprime to p, it must be of the form zψ(zn) for some
rational map ψ . If ψ is a constant map, then f has degree 1; otherwise, the minimal possible degree
is n − 1 when ψ(z) = a

z
with a �= 0. In this case, f (z) = a

zn−1 has the extra automorphism z �→ 1
z
. Thus,

there are no maps of degree n − 1 with Cn as their exact automorphism group, and n is the minimal
degree.

Remark 2.6. Let p be a prime and let n ≥ 2 be coprime to p. Then the map f (z) = zn+1 + z also has
Aut(f ) ∼= Cn. This f(z) appears when applying the construction used to prove Theorem 1.6 part (2) to
the multiplicative group μn of n-th roots of unity and the additive group �= 0. However, f(z) is not of
minimal degree for Cn.

2.2.3. Dihedral groups
In this section, we prove Theorem 1.7 part (3) that every p-regular dihedral group D2n arises as the exact
automorphism group of a self-map of P1(F̄p). The p-regularity condition here means that p> 2 and that
n is coprime to p.

Silverman described maps with automorphism group containing a dihedral group D2n; see [14] or
[16, Exercise 4.37]. In characteristic 0, these are exactly the maps of the form:

f (z) = z · F(zn)

zdnF(z−n)
,

where F is any polynomial and d is its degree. Using the form above, one can write down various families
of maps with at least dihedral symmetry and then check against extra automorphisms. For instance, in
characteristic 0, the realizability problem for D2n can be solved by zn+1, which corresponds to the choice
F(z) = z. But in characteristic p, this f sometimes acquires extra automorphisms. The task for us is to
find families of solutions that each work for most choices of p and n, so that taken together, all choices
of p and n are accounted for.

Proof of Theorem 1.7 part (3). In each case to be addressed, the maps α(z) = 1/z and β(z) = ζnz are
automorphisms of f that generate a dihedral group D2n. To prove exactness, we argue that in each case,
f has at most 2n automorphisms.
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(1) We assume n �≡ −1 (mod p) and f (z) = zn+1. A simple calculation shows that α and β are auto-
morphisms, so that D2n ⊆ Aut(f ). Any automorphism must permute sets of fixed points of the
same multiplier. Examining the equation f (z) = z, we calculate that the fixed points are 0 and
∞, and all the n-th roots of unity. Of these, the fixed points 0 and ∞ have multiplier 0, and the
n-th roots of unity have multiplier n + 1, which is nonzero by the hypothesis on n. We conclude
that every automorphism permutes {0, ∞} and permutes {ζn

k:k = 0, 1, ..., n − 1}.
An automorphism can be completely described by specifying the images of three points. So

we may bound the number of automorphisms by considering the possible images of 0, ∞, and
1. There are at most n choices for where to send 1. There are at most two choices for where to
send 0, and that choice also determines the image of ∞. So there are at most 2n automorphisms
of f .

(2) We assume n �≡ 1 (mod p), n> 2, and f (z) = 1
zn−1 . A simple calculation checks that α and β

are automorphisms, so D2n ⊆ Aut(f ). We again prove that {ζn
k : k = 0, ..., n − 1} and {0, ∞} are

invariant sets for every automorphism; then the argument in the first case proves the bound.
The first set is Fix(f ), so it is invariant. To prove invariance of {0, ∞}, we show that it is the set
of all points with a unique preimage. A direct check shows that this set contains 0 and ∞, so
we need only check that no other points are in the set. Suppose c �∈ {0, ∞}. Then the preimages
of c are the roots of zn−1 − 1

c
.

Since n �≡ 1 mod p by hypothesis, this polynomial is separable, so it has distinct roots. Then,
using the hypothesis n> 2, distinct roots implies at least two roots, so c does not have a unique
preimage. Since D2n has an element of order n, by Proposition 2.1, the lowest-degree map that
could realize it is n − 1, which is what we have.

(3) We assume n = 2 and f (z) = z · z2+a
az2+1

where a is not in the exceptional set {−3, −1, 0, 1}. First,
we observe that f has automorphisms α(z) = 1/z and β(z) = −z, which generate a dihedral
group D4

∼= C2 × C2 since p> 2. The conditions on a ensure that f has degree 3. Then, we just
need to show that f has at most four automorphisms. We can do this by finding two invariant sets
of cardinality 2. We calculate the fixed points of f and sort them by multiplier. The fixed points
are 0, ∞, 1, and −1. The first two of these have multiplier a and the last two have multiplier
(3 − a)/(a + 1). The conditions on a guarantee that these two multipliers are distinct. Finally,
this map f(z) is of minimal degree for D4, since by Theorem 1.8, there are no degree 2 maps
with automorphism group D4.

These cases account for all valid choices of p and n.

2.2.4. Platonic solid groups
The problem of finding maps with platonic solid symmetry in characteristic 0 has been studied in detail
by Klein [11], Doyle and McMullen [6], and de Faria and Hutz [4]. Using their examples, we experi-
mentally found that various self-maps of P1(Q̄) with platonic solid symmetries could usually be reduced
modulo p to produce maps of P1(F̄p) without picking up extra automorphisms. We turn this observation
into a proof of the remainder of Theorem 1.7 by carrying out the following strategy.

(1) Exhibit a faithful representation of � in PGL2(Q̄) where each entry of each matrix in � is an
algebraic integer. Then by reducing the entries of each matrix modulo p, we get entries in F̄p,
and, in fact, we get a new representation of � in PGL2(F̄p). We denote the image of � by �p.
We seek representations of � such that the resulting representation in PGL2(F̄p) is faithful for
almost all p.

(2) Choose a map f over Q̄ that has exact automorphism group � and reduce it modulo p to obtain a
map fp. The automorphism group of fp certainly contains �p but may have picked up additional
elements as well.

(3) Show that for most primes, the reduced map fp has degree at least two and no automorphisms
besides those in �p.
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(4) For any primes that have not been accounted for yet, make another choice of f and repeat the
process.

As it turns out, most choices of f seem to work for most primes p, so this strategy does not take long to
terminate. The third step above is the most interesting, and our methods differ somewhat for the three
platonic solid groups.

Proof of Theorem 1.7 part (5). The octahedral group S4 has 24 = 23 · 3 elements, and we study only
p-regular groups in this section, so this case only concerns primes p> 3.

The octahedral group has a representation over Q̄ given by:

� =
〈
S =

[
i i
1 −1

]
, T =

[
i 0
0 1

]
, U =

[
0 1
1 0

]〉
,

where i is a primitive fourth root of unity. Now we check whether reduction is injective. When p> 2,
the image of i is still a primitive fourth root of unity. The subgroup �′ generated by S, T2, and U is
tetrahedral. Reduction is injective on �′ since the elements U, T2, UT2, U2, S2, S3, US remain distinct,
which means the image has cardinality at least 7. Then, the first isomorphism theorem of group theory
shows that the homomorphism is injective. And reduction does not map T into the image of �′, so the
image of � has at least 13 elements, so reduction is injective on �.

The paper by de Faria and Hutz [4] gives examples of maps with exact automorphism group �. We
first try reducing

f (z) = −z5 + 5z

5z4 − 1
.

The resultant is −212 · 34, so the reduced map fp has degree 5 for all p> 3.
This gives us maps for every p> 3 with automorphism group containing �p, but we need to check

for extra automorphisms. Suppose f has an extra automorphism. By the classification of subgroups (see
the Appendix), all the finite subgroups of PGL2(F̄p) strictly containing S4 are p-irregular, so any extra
automorphism implies the existence of an automorphism of order p. Then by equation (2.3), we know
deg f ≡ 0, 1 (mod p), so p ≤ deg f + 1 = 6. So we have exactly �p except possibly when p = 5. In that
case, we need to try another f since f5(z) = z5 has automorphism group PGL2(F5) �= �5.

To account for the case p = 5, we try another choice:

f (z) = −7z4 − 1

z7 + 7z3
.

We compute the resultant −216 · 34 and find that 5 is not a factor, so the reduced map is degree 7. And
the prime 5 passes the test of equation (2.2), and, since we are working with a single prime, we compute
directly in Sage [19] that the automorphism group is S4.

Proof of Theorem 1.7 part (6). The icosahedral group A5 has 60 = 22 · 3 · 5 elements, so this case
only concerns primes p ≥ 7. We need a choice of representation � of A5 in PGL2(F̄p). We first consider
the representation over Q̄ that was used by Klein [11]; denoting a chosen primitive fifth root of unity by
ζ , the matrix generators are

S =
[
ζ 3 0
0 ζ 2

]
, T =

[
ζ − ζ 4 −ζ 2 + ζ 3

−ζ 2 + ζ 3 ζ − ζ 4

]
.

Next, we verify that the reduction mod p homomorphism is injective. Since A5 is simple, the possibilities
for the kernel are the trivial group and all of A5, and the kernel does not contain S as long as p �= 5, so
the kernel in our case is trivial.

The Appendix shows that, if a map has automorphism group strictly larger than A5, then its
automorphism group is p-irregular, so the same method as the previous section applies.
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Doyle and McMullen provide examples of maps with exact automorphism group A5 over Q̄ [6]. We
try

f (z) = z11 + 66z6 − 11z

−11z10 − 66z5 + 1
.

The resultant is divisible only by 2, 3, and 5, so the reduced map is degree 11 for all p> 5. Equation
(2.2) shows that the only primes for which we may pick up extra automorphisms are p = 2, 3, 5, 11. In
fact, when p = 11, our example reduces to z11, which has exact automorphism group PGL2(F11).

So for the case p = 11, we try a different map. We check

f (z) = −57z15 + 247z10 + 171z5 + 1

−z19 + 171z14 − 247z9 − 57z4
.

We confirm that 11 does not divide the resultant, so the map is degree 15 after reduction; then (2.2)
shows that f11 has p-regular automorphism group, and we compute Aut(f11) ∼= A5.

Remark 2.7. When p = 3, there is a subgroup of PGL2(F̄3) isomorphic to A5, but it is p-irregular. In
Section 2.1.5, we checked that A5 is realizable when p = 3 directly, rather than by reducing a map over
Q̄ modulo 3.

The tetrahedral group A4 is a bit more difficult to analyze than the previous cases because the rep-
resentations of A4 in PGL2(F̄p) are subrepresentations of S4, which is also p-regular. There is also an
additional curiosity in that the maps that invariant theory furnishes over Q̄ are not defined over Q, for
the particular representation we work with. This does not affect our calculation, but it is interesting.

Proof of Theorem 1.7 part (4). Since |A4| = 12, we work with p ≥ 5. Let � be the Q̄-representation
of A4 with matrix generators: {[

i i
1 −1

]
,

[−1 0
0 1

]
,

[
0 1
1 0

]}
,

where i is a primitive fourth root of unity. In the proof of Theorem 1.7 part (5), we showed that the
reduction map is injective for this representation.

De Faria and Hutz [4] provides examples of maps over Q̄ with exact automorphism group �. We first
try

f (z) =
√−3z2 − 1

z3 + √−3z
.

The resultant has just 2 as a prime factor, so for p> 2 the degree is still 3 after reduction.
Next, we check against extra automorphisms. The argument of Faber [7, Proposition 4.14, 4.17] shows

that each tetrahedral subgroup � of PGL2(F̄p) is uniquely contained in an octahedral group. The cited
argument starts with a particular choice of � and calculates the copy of S4; since the argument uses a
different choice of � than we do, we are using the fact that every tetrahedral subgroup is conjugate in
PGL2(F̄p).

In our case, the octahedral group is, as described previously, generated by � together with[
i 0
0 1

]
.

We check directly that this matrix is not an automorphism of f , even after reduction, by starting from
the equation f (iz) = if (z) and simplifying. The calculation is omitted.

Because the automorphism group of f is not isomorphic to S4, if there were remaining automor-
phisms, then the automorphism group would be p-irregular. The test of equation (2.2) shows that fp has
p-regular automorphism group except possibly when p = 2, 3, and these primes are not present in this
case.
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To prove that f is of minimal degree, we need only rule out the possibility that a degree 2 map has
automorphism group A4. This follows from (2.2), since A4 contains an element of order 4.

3. Theoretical tools for discovering examples

In Theorems 1.7 and 1.6, we showed through explicit constructions that, for any prime power q, every
subgroup of PGL2(Fq) arises as the automorphism group of a dynamical system. For instance, we cal-
culated that PSL2(Fq) is the automorphism group of a certain dynamical system of degree at most
1
2
(q3 − 2q2 + q + 2). In this section, we develop the theoretical tools that explain how we arrived at

these constructions. We present the motivating theorems, then develop the proofs in stages.
Our work is modeled on the theory over C. In work on the quintic, Doyle and McMullen [6] proved a

version of the following structure theorem for rational maps of P1(C) with automorphisms. The theorem
statement requires definitions from invariant theory, which we defer to Section 3.1.

Theorem 3.1 (Doyle and McMullen [6, Theorem 5.2]). Suppose that � is a subgroup of PGL2(C). Let
�̂ be the preimage of � in SL2(C). Then every rational map f such that deg (f ) ≥ 2 and � ⊆ Aut(f ) arises
in the form:

[x : y] �→
[

xF + ∂G

∂y
: yF − ∂G

∂x

]
,

where F and G are homogeneous, relatively invariant polynomials for the same character of �̂, such
that F = 0 or deg (F) + 1 = deg (G) − 1 = deg (f ).

The proof idea is that there are ways of going back and forth (not quite bijectively) between the
following sets:

• Rational maps of P1(C) such that � ⊆ Aut(f );
• Homogeneous invariant polynomial differential 1-forms in x, y over C;
• Pairs (F, G) of homogeneous invariant polynomials in C[x, y] such that F = 0 or deg (F) + 2 =

deg (G).

In characteristic p, both the proofs and the results require modification, mainly because not all
polynomials have antiderivatives. We prove the following variation.

Theorem 3.2. Let p be a prime, and let q be a power of p.

(1) Suppose that p> 2 and � is a p-irregular subgroup of PGL2(Fq). Let �̂ be the preimage of
� in SL2(Fq2 ). Then every rational map f such that deg (f ) ≥ 2 and � ⊆ Aut(f ) arises in the
form:

[x : y] �→
[

xF + ∂G

∂y
: yF − ∂G

∂x

]
, (3.1)

where F and G are homogeneous, relatively invariant polynomials over F̄p for the same
character of �̂, such that deg (F) + 1 = deg (G) − 1 = deg (f ).

(2) Let p ≥ 2. Let F and G be homogeneous, relatively invariant polynomials over F̄p for the same
character of � ⊆ SL2(Fq). Let �̄ be the image of � in PSL2(Fq). If the expressions xF + ∂G

∂y
and

yF − ∂G
∂x

are nontrivial homogeneous polynomials of the same degree, then the corresponding
rational map f of the form (3.1) has �̄ ⊆ Aut(f ).

One of the difficulties in applying Theorem 3.2 to the realizability problem is that the resulting map
f may only satisfy � ⊆ Aut(f ), while we are looking for equality. In trying to realize PSL2(Fq), for
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many choices of invariants, the machinery of Theorem 3.2 resulted in a map with automorphism group
PGL2(Fq). We observed that the degree of the minimal example of exact PSL2(Fq) automorphism group
was a cubic polynomial in q. We formulate this observation as Theorem 3.3, with the tools for the proof
coming from Propositions 3.5 and 3.6.

Theorem 3.3. Let p> 2 and let q be a power of p. The degree of a rational map with automorphism
group PSL2(Fq) must be at least

1

2

(
q3 − 2q2 + q + 2

)
.

We omit the case p = 2 because then PSL2(Fq) and PGL2(Fq) coincide.
A second application of Theorem 3.2 is to the problem of realizing A5 over F̄3. Over C, the minimal

degree of a map with exact automorphism group A5 is 11. The example over F̄3 described in Theorem
1.6 part 5 has degree 21. This turns out to be the minimal degree for A5 when p = 3.

Theorem 3.4. A rational map over F̄3 with automorphism group A5 has degree at least 21.

3.1. Preliminaries from invariant theory

Let k be a field. Let V be a two-dimensional vector space over k. Let H be a subgroup of GL2(k). Let
P[V ] be the algebra of polynomial functions on V , that is, the symmetric algebra of the dual space V∗.
Then H acts on P[V ] by pullback:

H × P[V] → P[V],

(h, F) �→ F ◦ h.

We write h∗F = F ◦ h. The elements of P[V ] fixed by this action form a subring of P[V ], denoted P[V]H ,
called the ring of (polynomial) invariants.

Let χ be a character of H, that is, a homomorphism H �→ k∗. The set
{F ∈ P[V] : ∀h ∈ H, h∗F = χ (h)F}

forms a P[V ]-submodule of P[V ] called the module of relative (polynomial) invariants, denoted P[V]H
χ
.

We make the analogous definitions for formal differential forms, following Smith [18]. Let �[V]
be the exterior algebra on the dual space V∗. Let E[V] = P[V] ⊗�[V]. The algebra E[V ] is called the
polynomial tensor exterior algebra. We think of its elements as formal differential forms defined only
with polynomials.

We recall the basic properties of E[V ], for convenience choosing a basis v, w of V .

(1) The basis v, w of V induces a basis x, y of P[V ] and algebra generators dx, dy of�[V]. The exte-
rior algebra �[V] is spanned as a k-vector space by 1, dx, dy, dx ∧ dy. The polynomial algebra
P[V ] is infinite-dimensional as a k-vector space and is spanned by monomials in x, y.

(2) There is a k-linear map d : E[V] → E[V] called the exterior derivative. It is defined as follows.
We set

d(dx) = d(dy) = 0,

d(x) = dx,

d(y) = dy.

Then, we extend d to all of E[V ] by linearity and the Leibniz rule:
d(θ1θ2) = (dθ1)θ2 + θ1(dθ2).
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In particular, for any f ∈ P[V], we have

df = ∂f

∂x
dx + ∂f

∂y
dy.

Forms in the kernel of d are closed, and forms in the image of d are exact. For any ω ∈ E[V],
we have d(dω) = 0, so exact forms are closed.

(3) A group H of linear self-maps of V induces a pullback action on E[V ], as we now explain.
Elements of E[V ] are sections of the bundle of differential forms on V , where V is viewed
as a variety. Let TV be the tangent bundle on V . Let D denote the standard Jacobian matrix
derivative. Then any algebraic map h:V → V induces a pushforward map h∗ : TV → TV . It is
defined as follows: given a tangent vector δ to a point v ∈ V , the pushforward h∗δ is the tangent
vector (Dh)(δ) to h(v). Since V is a vector space, we may canonically identify the tangent spaces
(TV)v and (TV)h(v) with V . In our setting, the self-map h is linear rather than just algebraic, so
it is equal to its own Jacobian with this identification. Thus,

h∗δ = h(δ).

The pullback of a form θ ∈ E[V] by an algebraic map h : V → V is defined by:

h∗θ = θ ◦ h∗.

Thus, any group H of linear self-maps of V induces an action on E[V ]. It follows from the
definition that h∗ respects the algebra structure of E[V ] and that h∗ commutes with the exterior
derivative d.

A form ω ∈ E[V] is called relatively invariant for H (with respect to a character χ ) if for all h ∈ H,
we have

h∗ω= χ (h)ω.

If χ is the trivial character, then ω is also called an absolute invariant.
The set of relatively invariant forms for H with character χ form the module of relatively invariant

(formal differential) forms, denoted E[V]H
χ
.

There are a number of natural gradings to consider on E[V ]. Our convention for the grading is as
follows. After choosing generators x, y for P[V ] and the corresponding basis dx, dy for the 1-forms in
the exterior algebra, we assert that x and y have degree 1 and that dx and dy have degree 0; then we
extend multiplicatively. In particular, a homogeneous 1-form is one where dx and dy have coefficients
which are homogeneous polynomials of the same degree. (Our convention is that 0 is of every degree.)

3.2. From rational maps to 1-forms and back

We follow [6, Section 5.III]. Viewing V as a variety, each tangent space of V is canonically isomorphic
to V . Thus, given any polynomial map:

�:A2 →A2,

�(x, y) = (�1(x, y),�2(x, y)),

we can associate a vector field X� on V ; it sends (x,y) to the point in (TV)(x,y) corresponding to �(x, y).
For any linear map h : V → V , we may consider the pushforward h∗X� and the conjugate map �h. It
follows immediately from the definition of X� that in fact,

h∗X� = X�h .

Throughout, let ω= dx ∧ dy. Let ω� be the 1-form defined by contraction of ω by the vector field X�;
that is,

ω�( · ) =ω(X�, ·).
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In coordinates,
ω� =�2dx −�1dy.

It follows from the definition of ω�, or its expression in coordinates, that for any invertible linear map
h : V → V , we have

h∗ω� =ω�h .

In particular, we have �=�h if and only if h∗ω� =ω�.
We can use this connection to translate data about the automorphism group of f into invariant theory,

as follows.
Let � ⊆ PGL2(k). Let �̂ be a subgroup of GL2(k) that is mapped to PGL2(k) by projectivization.

Let f be a rational map. If γ ∈ � is an automorphism of f , then f γ = f . Let � be any lift of f to a
polynomial function on A2. Specifically, � is a pair of homogeneous polynomials that define the same
endomorphism ofP1 as f . Let M be any preimage of γ in �̂. Since f = f γ , there exists some value χ (M) ∈
k∗ such that �M = χ (M)�. In fact, χ (M) is independent of the choice of lift �. The rule M �→ χ (M)
defines a character χ :�̂→ k∗. We have

M∗ω� =ω�M =ωχ (M)� = χ (M)ω�.

So, if f has automorphism group containing �, then for any lift � of f , the 1-form ω� is a relative
invariant of �̂ with respect to some character.

Conversely, to a nonzero homogeneous 1-form ω= f1dx + f2dy, we can associate the rational map
r(ω) := [ − f2 : f1]. If ω is relatively invariant for a subgroup H of GL2, then the elements of the image
H̄ of H in PGL2 are automorphisms of r(ω). We have established the following proposition.

Proposition 3.5. Let � ⊆ PGL2(k) and let �̂ be a subgroup of GL2(k) that maps to � by projectivization.
Let f be a rational map of P1.

(1) If f has automorphism group containing �, then for any lift � of f, the 1-form ω� is a relative
invariant of �̂ with respect to some character.

(2) If ω� is a relative invariant of a group H, then H̄ ⊆ Aut(f ).

Some remarks are as follows:

(1) These associations, from rational maps to nonzero homogeneous 1-forms and back, are almost
inverse, but not quite. There is no well-defined association f �→ω�, except up to scaling. Even
so, we can say r(ω�) = f .

(2) We have deg (ω�) = deg (f ). But because of the possibility of a common factor, the most we
can say about r(ω) is that deg (r(ω)) ≤ deg (ω). Equality occurs if and only if ω has no nonzero
homogeneous polynomial of positive degree as a factor.

3.3. From 1-forms to polynomials and back

The next proposition links invariant 1-forms to pairs of invariant polynomials. We defer the proof to the
end of this subsection.

Proposition 3.6. Let λ= ydx − xdy.

(1) Let k be a field of characteristic p. Let η be a homogeneous 1-form of degree n, where

n �≡ −1 (mod p). (3.2)

Then there exist homogeneous polynomials F and G, possibly 0, such that

η= Fλ+ dG,
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where dG is the 1-form dG = ∂G
∂x

dx + ∂G
∂y

dy. Writing η= η1dx + η2dy, explicit formulas for F
and G are

F = 1

n + 1

(
∂η1

∂y
+ ∂η2

∂x

)
,

G = 1

n + 1
(xη1 + yη2).

(2) Suppose H is a subgroup of SL2(k). If η is a relative invariant for H with character χ , then the
above F and G may further be chosen to be relative invariants of H for character χ .

(3) Suppose H is a subgroup of SL2(k). If F and G are homogeneous invariant polynomials of H
with character χ such that Fλ+ dG is homogeneous, then Fλ+ dG is also a relative invariant
for χ .

Remark 3.7. To show that the degree hypothesis (3.2) is needed, consider the example η= yp−1dx. If
we assume η= Fλ+ dG for some F, G, then we get the equations:

yp−1 = yF + ∂G

∂x
,

0 = −xF + ∂G

∂y
.

An appropriate linear combination of the above equations gives

xyp−1 = x
∂G

∂x
+ y

∂G

∂y
= ( deg G)G = 0,

which is false.
The restriction on degree makes this proposition more subtle than its characteristic 0 counterpart.

But in our application (Theorem 3.2), the degree hypothesis is automatically satisfied in the p-irregular
case. Thus, Proposition 3.6 is a rare example of modular invariant theory being less complicated than
nonmodular invariant theory.

Remark 3.8. There are creative ways of evading the degree hypothesis (3.2). For instance, say p> 2
and η is a relative invariant for H with character χ with degree n, where

n ≡ −1 (mod p).

There is an absolutely invariant homogeneous polynomial of GL2(Fq) of degree q2 − 1, which we denote
u (see, for instance, Smith [18, Chapter 8]). Then uη is a relative invariant for H with character χ with
degree −2 mod p. Thus, η can be written in the form (Fλ+ dG)/u, where F and G are in degrees
n + q2 − 2 and n + q2, respectively. Thus, the structure of the module of relative invariants still affects
the existence of rational maps in these degrees.

Before we embark on the proof, we first need a version of the Poincaré Lemma of exterior algebra
that is appropriate for fields of characteristic p.

Lemma 3.9. Say η is a homogeneous, closed 1-form on a two-dimensional vector space over a field of
characteristic p. Suppose also that η has degree n such that

n �≡ −1 (mod p).

Then η is exact.
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Proof. Express η in a basis as η1dx + η2dy. Since η is closed, we may obtain from the equation dη= 0
that

∂η1

∂y
= ∂η2

∂x
.

Then we compute explicitly

d(xη1 + yη2) = η1dx + xdη1 + η2dy + ydη2

= η+ xdη1 + ydη2

= η+ x
∂η1

∂x
dx + x

∂η1

∂y
dy + y

∂η2

∂x
dx + y

∂η2

∂y
dy

= η+ x
∂η1

∂x
dx + y

∂η1

∂y
dx + x

∂η2

∂x
dy + y

∂η2

∂y
dy (using closedness)

= η+ nη= (n + 1)η. (using homogeneity).

By assumption, we may divide by n + 1, so we have the explicit formula:

η= d

(
1

n + 1
(xη1 + yη2)

)
. (3.3)

We are ready to prove Proposition 3.6.

Proof of Proposition 3.6. Throughout, set ω= dx ∧ dy. Notice that ω is absolutely invariant with
respect to SL2(k).

(1) One may just check that the given formulas for F and G suffice. We now explain how to derive
the formulas. First, we show that there is a homogeneous polynomial F of degree n − 1 such
that dη= d(Fλ). We have

dη=
(

−∂η1

∂y
+ ∂η2

∂x

)
ω.

For convenience, let

j =
(

−∂η1

∂y
+ ∂η2

∂x

)
.

Thus,

dη= jω.

For any homogeneous polynomial F, we have by the Leibniz rule that

d(Fλ) = (dF)λ+ F(dλ)

=
(
∂F

∂x
dx + ∂F

∂y
dy

)
( − ydx + xdy) + Fω

=
(
∂F

∂x
x + ∂F

∂y
y

)
ω+ 2Fω

= (2 + deg F)Fω.

Thus, the desired F must satisfy

F = j

2 + deg F
,

so we see that F must be of degree n − 1 and we take

F = j

n + 1
.
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With this choice of F, we know that the 1-form η− Fλ is closed, hence exact by Lemma 3.9.
Thus, there exists a 0-form G such that dG = η− Fλ. Applying (3.3), we obtain the stated
formula for G.

(2) Let h ∈ H. Let j be as in the proof of (1). We compute the pullback h∗(dη) two ways. On the
one hand,

h∗(dη) = h∗(jω)

= (h∗j)(h∗ω) (h∗ respects multiplication)

= (h∗j)ω. (ω is absolutely invariant).

On the other hand,

h∗(dη) = d(h∗η) (d and h∗ commute)

= d(χ (h)η) (η is relatively invariant)
= χ (h)dη

= χ (h)jω.

Thus, h∗j = χ (h)j, so j is relatively invariant. Since F = j/(n + 1), we conclude that F is
relatively invariant.

Now we show that G is relatively invariant, that is, that χ (γ )G = γ ∗G. Since η and F are
relatively invariant, and λ is absolutely invariant, we have

h∗(dG) = h∗(η− Fλ)

= h∗η− (h∗F)(h∗λ)

= χ (h)η− χ (h)Fλ

= χ (h)(dG).

So dG is relatively invariant. This implies that χ (h)G − h∗G is a homogeneous closed 0-form of
degree n + 1. The only nonzero closed 0-forms are elements of the polynomial ring k[xp, yp]. By
the assumption that n �≡ −1 mod p, we may conclude that χ (h)G − h∗G = 0, so G is relatively
invariant.

(3) Let h ∈ H. We compute

h∗(Fλ+ dG) = (h∗F)(h∗λ) + h∗(dG)

= χ (h)Fh∗λ+ h∗(dG)

= χ (h)Fλ+ h∗(dG)

= χ (h)Fλ+ d(h∗G)

= χ (h)Fλ+ d(χ (h)G)

= χ (h)(Fλ+ dG).

3.4. Proofs

We conclude this section by proving Theorems 3.2, 3.3, and 3.4.

Proof of Theorem 3.2

(1) Let f be a map as described in the theorem statement. Choose any lift� of f . Then deg (ω�) =
deg (f ). By equation (2.2), we know deg (ω�) ≡ −1, 0, 1 mod p. Since p> 2 by assumption,
the form ω� meets the degree hypothesis of Proposition 3.6 (1). Since ω� is the form associated
with a rational map via 3.5, it is relatively invariant for �̂ with respect to some character, so
the invariance hypothesis of Proposition 3.6 (2) is also met. To meet the hypothesis that �̂ is
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a subgroup of SL2(k), we take k to be Fq2 and view � as a subgroup of PSL2(Fq2 ). Thus, we
can write ω� = Fλ+ dG for relative invariant homogeneous polynomials F and G for the same
character. Then, again by Proposition 3.5, we have

f = r(ω�) = r(Fλ+ dG).

The theorem statement is just this equation written in coordinates.
(2) Let ω= Fλ+ dG. The conditions on F and G ensure that ω is homogeneous and nonzero. By

Proposition 3.6 (3), ω is relatively invariant for �. Then r(ω) has the claimed automorphisms,
by the discussion immediately preceding Proposition 3.5.

Proof of Theorem 3.3. Assume that f has automorphism group PSL2(Fq). Write d = deg (f ). Let ω
be a 1-form associated with f via Proposition 3.5. By the proof of Proposition 3.6, there exist relatively
invariant homogeneous polynomials F and G of SL2(Fq) such that ω= Fλ+ dG. We also know deg F +
1 = deg G − 1 = d (or F = 0). Surely G �= 0 because otherwise there would be a homogeneous factor,
causing f to be degree 1, which we reject.

For q> 2, the only character of SL2(Fq) is the trivial character. To see this, we invoke a well-known
fact from group theory (see Dickson [5]): the abelianization of SL2(Fq) is trivial as long as q ≥ 4. Every
character factors through the abelianization, so every character is trivial. For q = 3, the group PSL2(F3)
is isomorphic to the alternating group A4. There are only two 3-regular conjugacy classes in A4, so there
are two modular characters. These are the trivial character and a degree 3 character (the reduction of the
ordinary degree 3 character). Since we are only interested in linear characters for invariants, we need
only consider the trivial character in the q = 3 case.

Now we ask for which values of d there exist homogeneous invariant polynomials in degrees d − 1
and d + 1. We cite a standard theorem in modular invariant theory, see Smith [18, Theorem 8.1.8]: the
ring of invariants Fq[x, y]SL2(Fq) is generated as an Fq-algebra by the fundamental invariants:

u1 = xqy − xyq

and

u2 =
q∑

n=0

x(q−1)(q−n)y(q−1)n = xq2
y − xyq2

xqy − xyq
.

The set of degrees of nontrivial polynomial invariants is, thus, the numerical semigroup generated
by q + 1 and q(q − 1). It is also known that u1 and u2 are algebraically independent; that is, the ring of
invariants above is actually a polynomial ring. So we can write F and G as polynomials in u1 and u2, in
a unique way.

Next, we show that certain simple families of F and G give rise to 1-forms which are relatively
invariant for a character of GL2(Fq). By Proposition 3.5, such 1-forms give rise to rational maps with
automorphism group PGL2(Fq). Therefore, the only way to get a map with exact automorphism group
PSL2(Fq) is to avoid these families.

The determinant, denoted by det, is a character of GL2(Fq). The polynomial u1 and the 1-form λ are,
by direct calculation, relative invariants for det. The polynomial u2 is an absolute invariant of GL2(Fq).
This causes many simple expressions of the form Fλ+ dG to be relative invariants for some power of
det.

Each pair of F and G falls into at least one of the following cases:

(1) F = 0.
(2) F �= 0 and F and G are monomials in u1 and u2.
(3) At least one of F and G is not a monomial in u1 and u2.

Now we see which elements of these cases are admissible, in the sense that Fλ+ dG is not a relative
invariant for any power of det.
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(1) Say F = 0. If G is a pure polynomial in u1, it is of the form cu1
k, so it is a relative invariant of

GL2(Fq) for detk. If G is a pure polynomial in u2, it is an absolute invariant of GL2(Fq). So G
must contain a binomial, which reduces us to the last case.

(2) Write F = αu1
a1 u2

a2 , G = βu1
b1 u2

b2 , where α, β ∈ F∗
q. Then, Fλ is relatively invariant for

deta1+1 and G is relatively invariant for detb1 . The sum of relative invariants for the same
character is again a relative invariant, so deta1+1 �= detb2 . Since detq−1 is trivial by cyclicity of
k∗, we conclude

a1 + 1 �≡ b1 mod (q − 1).

This property is preserved by multiplying or factoring out a monomial simultaneously from F
and G. Thus, we reduce to one of the following cases: F = u1

a1 and G = u2
b2 , or F = u2

a2 and
G = u1

b1 .
In the first case, a1 and b2 are positive solutions to

a1(q + 1) + 2 = b2(q2 − q).

Finding minimal solutions for such equations is a basic Diophantine problem. Reducing modulo
q(q − 1)/2, we find a1 ≡ q − 2. We earlier found that a2 + 1 �≡ b1 mod (q − 1), and b1 = 0, so
we cannot have a1 = q − 2. Looking at the next positive solution for a1 gives

a1 ≥ 1

2
q(q − 1) + q − 2.

Then the degree of f in this case is at least
(

1
2
q(q − 1) + q − 2

)
(q + 1) + 1.

In the second case, a2 and b1 are positive solutions to

a2(q2 − q) + 2 = b1(q + 1).

The minimal solution occurs when

b1 ≥ 1

2
(q2 − q) − q + 2.

Then

deg (f ) ≥ 1

2
(q3 − 2q2 + q + 2).

(3) The lowest degree homogeneous polynomial in u1 and u2 that is not a monomial occurs in
degree:

lcm( deg (u1), deg (u2)) = 1

2
q(q − 1)(q + 1).

Thus, if F or G contains a binomial, deg (f ) ≥ 1
2
q(q − 1)(q + 1) − 1.

Recalling that q ≥ 3, the bound

deg (f ) ≥ 1

2
(q3 − 2q2 + q + 2)

holds across all the cases.

Proof of Theorem 3.4. Assume that f has automorphism group A5 ⊆ PGL2(F̄3). We claim that deg f ≥
21. Let ζ be a primitive fifth root of unity in F̄3. By a conjugacy, we may assume that the subgroup A5

is generated by the matrices: [
ζ 0
0 1

]
and

[
1 1 − ζ − ζ−1

1 −1

]
.

Let Â5 be the inverse image of A5 in SL2(F̄3). We note that the only character of Â5 is the trivial character.
To see this, notice that Â5 is isomorphic to SL2(F̄5), so the abelianization of Â5 is trivial. By the lack of
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nontrivial characters and Theorem 3.2, there exist homogeneous polynomials F and G over F̄3 that are
absolutely invariant for Â5, such that either F = 0 or deg (F) + 1 = deg (G) − 1 = deg f , and

f =
[

xF + ∂G

∂y
: yF − ∂G

∂x

]
.

In Magma [3], we compute the fundamental invariants of Â5. Let i ∈ F̄3 satisfy i2 + 1 = 0; then the
fundamental invariants are

u1 = x10 + iy10,

u2 = x11y + (i + 2)x6y6 − ixy11.

We now rule out some low-degree possibilities for F and G. We let c1 and c2 denote arbitrary nonzero
constants in F̄3.

• If F = 0 and G = c1u1, then by direct computation, the map f has extra automorphisms.
• If F = 0 and G = c2u2, then there is a common factor in the formula for f , so

deg f < deg (G) − 1.
• If F = c1u1 and G = c2u2, then there is a common factor in the formula for f .
• If F = 0 and G = c1u2

1, then there is a common factor in the formula for f .

The above cases rule out all the possibilities for G such that deg G ≤ 21, proving the theorem.

4. Moduli space M2 and its symmetry locus

We are interested in determining the automorphism locus A2(F̄p) ⊂M2(F̄p). It is known that M2
∼=

A2 via the explicit isomorphism f �→ (σ1, σ2), where σ1 and σ2 are the first two elementary symmetric
polynomials evaluated on the multipliers of the fixed points [17]. Any automorphism must permute the
fixed points of a map and can only permute fixed points with the same multipliers because multipliers
are invariant under conjugation. Utilizing this fact, in characteristic 0 the locus A2 ⊂M2(C) is worked
out in detail in [9] but is also discussed in [13]. The starting point is the discriminant of the multiplier
polynomial:

x3 − σ1x
2 + σ2x − (σ1 − 2), (4.1)

where σ1, σ2, and σ3 are the elementary symmetric polynomials evaluated at the multipliers of the three
fixed points. Note that we used the standard relation

σ3 = σ1 − 2

to write (4.1) using only σ1 and σ2, see Milnor [13, Lemma 3.1]. For there to be a nontrivial auto-
morphism, there must be two distinct fixed points with the same multiplier, so the discriminant of the
multiplier polynomial vanishes if there is a nontrivial automorphism. The two components of the curve
defined by the vanishing of (4.1) are then analyzed, only one of which corresponds to the existence of a
nontrivial automorphism. This provides a description of A2 ⊂M2(C) as a cuspidal cubic where every
map has automorphism group C2, except at the cusp, where it is S3. In particular, in characteristic 0,
the locus A2 is Zariski-closed and irreducible. We proceed similarly in characteristic p> 0 to arrive at
Theorem 1.8, which shows starkly different geometry in the p = 2 case.

As an element of PGL2(F̄p), an automorphism is completely determined by specifying the images of
three points. It follows that if a map has three distinct fixed point multipliers, the three fixed points are
fixed by any automorphism, and the map has no nontrivial automorphisms. We first show that every map
with two distinct fixed points with the same multiplier has a nontrivial automorphism. We use several
times the basic fact that a fixed point has multiplicity 1 if and only if its multiplier is not 1. Since the
fixed points are the zeros of

f (x) − x,
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they are simple roots (multiplicity one) if and only if the derivative

f ′(x) − 1

does not also vanish.

Lemma 4.1. Let f ∈ Rat2(F̄p). If f has two distinct fixed points with the same multiplier, then there exists
an automorphism which maps the two fixed points to each other and fixes the third.

Proof. Let f ∈ Rat2(F̄p) be a rational map which has two fixed points with the same multiplier λ. Note
that λ �= 1, since otherwise each fixed point has multiplicity at least 2, and there can only be three fixed
points for a degree 2 map when counted with multiplicity. Label the multipliers of the three (with mul-
tiplicity) fixed points as λ1, λ2, and λ3. Recall λ1λ2 = 1 ⇐⇒ λ1 = λ2 = 1 even in positive characteristic
since the relation σ1 = σ3 + 2 implies the (formal) identities:

(λ1 − 1)2 = (λ1λ2 − 1)(λ1λ3 − 1) and (λ2 − 1)2 = (λ2λ1 − 1)(λ2λ3 − 1).

So we are in the case that λ1λ2 �= 1 and, by the Normal Forms Lemma [15, Lemma 5.3], the map f must
be conjugate to a map of the form:

φ(z) = z2 + λz

λz + 1
.

Then, conjugation by z �→ 1
z

is an automorphism that permutes the fixed points 0 and ∞.

4.1. Automorphism locus over Fp, for p �= 2, 3

In this case, we can follow Fujimura and Nishizawa [9, Proposition 1], since no coefficients that arise
have prime divisors other than 2 and 3. For a map corresponding to the point (σ1, σ2) to have a non-
trivial automorphism, at least two multipliers must be equal. The multipliers are the roots of the
polynomial:

x3 − σ1x2 + σ2x − σ1 + 2, (4.2)

which has multiple roots if and only if its discriminant is 0. Therefore, there are at least two equal
multipliers exactly at the vanishing of its discriminant, which is

(σ2 − 2σ1 + 3)(2σ 3
1 + σ 2

1 σ2 − σ 2
1 − 4σ 2

2 − 8σ1σ2 + 12σ1 + 12σ2 − 36). (4.3)

Note that this equivalence holds over any field. The polynomial (4.3) is presented with two factors.
The zero locus of the first, σ2 − 2σ1 + 3, is exactly the set of points corresponding to maps with a fixed
point of multiplier 1. This is because a fixed point multiplier λ is a root of (4.2); substituting 1 for x yields
σ2 − 2σ1 + 3. Following Milnor [13], we call the vanishing locus of this polynomial Per1(1), since the
locus is the set of all conjugacy classes that have a fixed point with multiplier of 1.

We claim that the second curve, a cuspidal cubic denoted S, is the automorphism locus of quadratic
rational maps over Fp for p> 3.

We use the fact that a multiplier of a fixed point is equal to 1 if and only if its fixed point occurs
with multiplicity greater than 1. The two curves have a unique point of intersection at (σ1, σ2) = (3, 3),
which corresponds to a triple fixed point where λ1 = λ2 = λ3 = 1. All other points on Per1(1) correspond
to maps with a double fixed point and a single fixed point. Again by the Normal Forms Lemma [15,
Lemma 5.3], maps with λ1 = λ2 = 1 are conjugate to a map of the form:

f (z) = z + 1

z
+√1 − λ3,

which has a double fixed point at infinity and a single fixed point at −1√
1−λ3

. Infinity has preimages 0 and
itself; we know that automorphisms permute the set of fixed points and permute their preimages. The
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only possible element of PGL2 which could be an automorphism, then, is the map z �→ 1
z
, which is not

an automorphism of f .
It follows that any map with a nontrivial automorphism must lie on S. Points with exactly two equal

multipliers have C2 as their automorphism group by Lemma 4.1. Points with all three multipliers equal
must have σ1 = 3λ and σ3 = λ3, so the multiplier must be a root of the polynomial:

x3 − 3x + 2. (4.4)

This factors as (x + 2)(x − 1)2, so there are only two points on S with triple multipliers: (σ1, σ2) ∈
{( − 6, 12), (3, 3)}. The point (σ1, σ2) = ( − 6, 12) has all three multipliers equal to −2, so by Lemma 4.1
applied to each pair of fixed points, its automorphism group is S3. The point (σ1, σ2) = (3, 3) corresponds
to the map f (z) = z + 1

z
[15, Lemma 5.3], which has z �→ −z as its only nontrivial automorphism.

This completes the proof of Theorem 1.8 part (3), except for the verification that the cubic is cuspidal.
We defer this to Section 4.3.

4.2. Automorphism locus over F̄2

In F̄2, we still have the automorphism locus contained in S ∪ Per1(1), but equation (4.3) reduces and we
have the components:

S = V(σ 2
1 σ2 − σ 2

1 ) = V(σ1) ∪ V(σ2 − 1)

Per1(1) = V(σ2 − 1).

As before, the only point on Per1(1) \ {(0, 1)} that might have a nontrivial automorphism is the map with
λ1 = λ2 = λ3 = 1, which is (σ1, σ2) = (1, 1), or by the second part of the Normal Forms Lemma, f (z) =
z + 1

z
. This has no nontrivial automorphisms over F̄2. Its unique fixed point is ∞, the other preimage of

∞ is 0, and the unique preimage of 0 in F̄2 is 1. We would have expected z �→ −z to be an automorphism,
but it collapses to the identity map in characteristic 2.

Now we consider the intersection of the two components given by {(σ1, σ2) = (0, 1)}. This map is
conjugate to f (z) = z2 + z. Any possible automorphism of f must fix the point at infinity, so must be of
the form φ(z) = az + b, where a, b ∈ F̄2 and a �= 0. The equation

f ◦ φ = φ ◦ f

expands to

z2a2 + (2b + 1)za + (b2 + b) = (z2 + z)a + b. (4.5)

Thus, we have the following relations on a and b:

a2 = a, and 2ab + a = a, and b2 + b = b. (4.6)

Since a cannot be zero, we have a = 1 and b = 0, so the only automorphism is the identity.

Remark 4.2. To recover a Zariski-closed automorphism locus, one can work instead with the automor-
phism group scheme [8]. By definition, the automorphism group scheme of a rational map f over F̄2 is a
closed subgroup scheme of

PGL2 = Proj F̄2[a, b, c, d, (ad − bc)−1]

determined by the ideal generated by the equation f ◦ φ = φ ◦ f , where φ ∈ PGL2 is given by coordinates
a, b, c, d. In the case of the map f (z) = z2 + z, we can set a = c = d = 1 by the above reasoning about the
fixed points, so the automorphism group scheme of f is isomorphic to a closed subgroup scheme of F̄2[b].
With this identification, the group scheme structure on F̄2[b] is just that of the additive group scheme
Ga, reflecting the fact that these elements of PGL2 are translations. By (4.6), the relation determining
the automorphism group scheme of f is b2 = 0; hence, we obtain the automorphism group scheme:

α2 := Spec F̄2[b]/(b2).
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This is a nontrivial closed subgroup scheme of Ga, which is only possible in positive characteristic. The
group scheme α2 has just one closed point, reflecting the fact that f has only the identity automorphism,
but the group scheme structure is nevertheless nontrivial. It is clear that there will be other instances
in positive characteristic where the more general formulation of the automorphism group as a group
scheme is needed in order to recover a Zariski-closed automorphism locus.

It remains to investigate S \ Per1(1) = V(σ1) \ {(0, 1)}. Since this component is disjoint from Per1(1),
none of the multipliers are 1, and so corresponding maps have three distinct fixed points, but they still
have at least two equal multipliers. There is only a single point with a triple multiplier, since (4.4) reduces
to x(x − 1)2 and λ= 1 is on Per1(1). The point given by λ= 0 again has S3 as its automorphism group
by Lemma 4.1, and every other point on V(σ1) \ {(0, 1)} has C2 as its automorphism group.

This completes the proof of Theorem 1.8 part (1).

4.2.1. Normal form for A2

The symmetry locus in Rat2 traced out via the Normal Forms Lemma is also parameterized by the family
fc(z) = z2 + cz defined in the discussion after Theorem 1.8. The Normal Forms Lemma sheds some light
on what is happening in the family fc. There are two finite fixed points with multiplier c, and ∞ is a
fixed point of multiplier 0. From this, we can compute σ1 = 0 and σ2 = c2. These maps always have the
order 2 automorphism z �→ z + c − 1, which collapses to the identity when c = 1 (giving α2). For a more
geometric picture, the two finite fixed points are distinct, but they collapse onto each other when c = 1.

4.3. Automorphism locus over F̄3

In F̄3, equation (4.3) again reduces and we have

S = V(2σ 3
1 + σ 2

1 σ2 − σ 2
1 − σ 2

2 − 2σ1σ2) (4.7)

Per1(1) = V(σ2 − 2σ1).

Over F̄3, both (σ1, σ2) = (3, 3) and (σ1, σ2) = ( − 6, 12) (the triple-repeated multiplier maps) reduce
to (σ1, σ2) = (0, 0), the unique intersection of the two curves. This is the only possibility for a map with
all three multipliers equal, since equation (4.4) reduces to x3 − 1, which factors as (x − 1)3. Thus, there
is no map with all three fixed points distinct and all three multipliers equal, so, by the same arguments
as before, there is no map with automorphism group S3.

On the remainder of S \ Per1(1), it is still true that all three fixed points are distinct and two multipliers
are equal, so corresponding maps have automorphism group C2. Thus, the automorphism locus over F̄3

is a cuspidal cubic S on which all maps have automorphism group C2.
This completes the proof of Theorem 1.8 part (2), except for the verification that the cubic is cuspidal.

We do this next.

4.4. Geometry of the automorphism locus

For every prime p �= 2, we have shown that the automorphism locus is given by a cubic. It is natural
to ask if this cubic is cuspidal, as is the case in characteristic 0, or if reduction modulo p changes the
geometry. We now prove the curve remains cuspidal.

Proposition 4.3. Let p> 2. Then the automorphism locus A2 ⊂M2(F̄p) is a cuspidal cubic. In partic-
ular, it is irreducible. Furthermore, if p> 3, then the cusp is the unique point with automorphism group
S3 and all other points have automorphism group C2.
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Proof. We first show that the automorphism locus has a unique singularity. If the locus were reducible,
it would be the union of three lines or the union of a line and a degree 2 curve. In either case, one of
the tangent lines would divide the defining polynomial. So it suffices to show that the tangent lines do
not divide the defining polynomial. If there is a single tangent line with multiplicity 2, then the curve is
cuspidal by definition.

In the case where p = 3, the automorphism locus is given by equation (4.7). The singularities are
given by the common vanishing of the partial derivatives:

fσ1 = 2σ1σ2 − 2σ1 − 2σ2

fσ2 = σ 2
1 − 2σ1 − 2σ2,

which is the single point (σ1, σ2) = (0, 0). The tangent lines at this singularity are given by the lowest
degree homogeneous component of equation (4.7), which is −σ 2

1 − σ 2
2 − 2σ1σ2 = −(σ1 + σ2)2. This is

a double tangent line, and since σ1 + σ2 does not divide (4.7), we are done.
In the case where p> 3, the automorphism locus is given by:

S = V(2σ 3
1 + σ 2

1 σ2 − σ 2
1 − 4σ 2

2 − 8σ1σ2 + 12σ1 + 12σ2 − 36).

The partial derivatives are

Sσ1 = 6σ 2
1 + 2σ1σ2 − 2σ1 − 8σ2 + 12,

Sσ2 = σ 2
1 − 8σ2 − 8σ1 + 12σ2,

and the only singularity is (σ1, σ2) = ( − 6, 12), which was shown above to have S3 as its automor-
phism group. To compute the tangent lines, we need to first move the singularity to the origin with
the translation σ ′

1 = σ1 + 6 and σ ′
2 = σ2 − 12, so then

S′ = V(2σ ′3
1 + σ ′2

1 σ
′
2 − 25σ ′2

1 − 20σ ′
1σ

′
2 − 4σ ′2

2 ).

From this form, we can see that the tangent lines are given by:

−25σ ′2
1 − 20σ ′

1σ
′
2 − 4σ ′2

2 = −(5σ ′
1 + 2σ ′

2)2.

Once again, there is a double tangent line which does not divide the defining polynomial.

This completes the proof of Theorem 1.8.

Appendix

In this Appendix, we summarize the classification of finite subgroups of PGL2(k) up to conjugacy, where
k is an algebraically closed field of prime characteristic p. The results are essentially due to Dickson [5]
and Beauville [1]; for details and proofs, see Faber [7].

Let B(k) ⊂ PGL2(k) be the Borel group, that is, the group of affine transformations z �→ αz + β, where
α ∈ k× and β ∈ k+. Each finite subgroup of B(k) may be written as a semi-direct product μ��, where
μ is a finite subgroup of k× and � is a finite subgroup of k+.

A finite group is called p-semi-elementary if it has a unique p-Sylow subgroup of order p. Each
subgroup of B(k) is either 1, a p-regular cyclic group of order at least 2, or a p-semi-elementary group.

Table A1 should be read as follows:

• The empty set symbol ∅ denotes that no finite group isomorphic to � exists in PGL2(k). For
each entry that is not marked ∅, a finite group isomorphic to � exists in PGL2(k).

• The entry p-reg in row � means that the group � exists in PGL2(k), is unique up to conjugacy,
and � is p-regular.

• The entry p-irr means that � exists in PGL2(k), is unique up to conjugacy, and � is p-irregular.
• The entry p-irr∗ means that � exists in PGL2(k), possibly with multiple conjugacy classes, and
� is p-irregular.

https://doi.org/10.1017/S0017089522000222 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089522000222


254 J. Cai et al.

Table A1. Finite subgroups of PGL2(k) up to conjugacy, where k is an algebraically closed field
of prime characteristic p.

Group . . .where. . . p = 2 p = 3 p = 5 p ≥ 7
PGL2(Fq) q is a power of p p-irr p-irr p-irr p-irr
PSL2(Fq) q is a power of p (p-irr) p-irr p-irr p-irr
1 p-reg p-reg p-reg p-reg
Cyclic Cn n ≥ 2 and (n, p) = 1 p-reg p-reg p-reg p-reg
p-Semi-elementary μ�� μ⊆ k× and �⊆ k+ p-irr∗ p-irr∗ p-irr∗ p-irr∗

Dihedral D2n n = 2 ∅ p-reg p-reg p-reg
Dihedral D2n n> 2 and (n, p) = 1 p-irr p-reg p-reg p-reg
Tetrahedral A4 (p-irr) (p-irr) p-reg p-reg
Icosahedral A5 (p-irr) p-irr (p-irr) p-reg
Octahedral S4 ∅ (p-irr) p-reg p-reg

• We mark some entries with parentheses (p-irr) to denote that, while the group � exists in
PGL2(k), it is accounted for elsewhere in Table A1 due to an accidental isomorphism. Thus,
given a field k, each subgroup � of PGL2(k) belongs to exactly one row marked p-reg, p-irr, or
p-irr∗. For the purposes of the realizability problem, it suffices to study just these cases.

The complete list of accidental isomorphisms for the entries marked (p-irr) is as follows:

• If p = 2 and q is a power of p, then PGL2(Fq) ∼= PSL2(Fq).
• If p = 2, then A4

∼= B(F4) is p-semi-elementary.
• If p = 2, then A5

∼= PGL2(F4).
• If p = 3, then A4

∼= PSL2(F3).
• If p = 3, then S4

∼= PGL2(F3).
• If p = 5, then A5

∼= PSL2(F5).

For our applications, it is also useful to understand the possible containments between these sub-
groups of PGL2(F̄p). By [7, Remark 2.1], a finite subgroup � ⊂ PGL2(F̄p) is p-semi-elementary if and
only if it fixes a unique point in P1(F̄p). A subgroup is dihedral if and only if it stabilizes, but does not
fix, a subset of P1(F̄p) of cardinality 2. From these facts, and general group theory, we can deduce that
for any strict inclusion of subgroups � � �′ ⊂ PGL2(F̄p),

(1) If � ∼= A4, then �′ is isomorphic to S4, PGL2(Fq), or PSL2(Fq) for some power q of p.
(2) If � ∼= A5 or � ∼= S4, then �′ is isomorphic to PGL2(Fq) or PSL2(Fq) for some power q of p.
(3) If � ∼= PSL2(Fq) for some power q of p, then �′ is isomorphic to PGL2(F′

q) or PSL2(F′
q) for

some power q′ of p.
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