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Abstract. For a C1+α diffeomorphism f of a compact smooth manifold, we give
a necessary and sufficient condition that guarantees that if the set of hyperbolic
Lyapunov–Perron regular points has positive volume, then f preserves a smooth measure.
We use recent results on symbolic coding of χ-non-uniformly hyperbolic sets and results
concerning the existence of SRB measures for them.
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1. Introduction
In his 1998 ICM address, Viana proposed the following conjecture.

Conjecture. If a smooth map f has only non-zero Lyapunov exponents at Lebesgue almost
every (a.e.) point, then f preserves an SRB measure.

SRB measures were first constructed in the 1970s by Sinai, Ruelle, and Bowen in the
context of Axiom A attractors [6, 14, 16], that is, topological attractors which are uniformly
hyperbolic and contain a dense set of periodic points. SRB measures are hyperbolic
measures, meaning that all of their Lyapunov exponents are non-zero, whose conditional
measures along almost every unstable manifold are absolutely continuous with respect
to leaf volume on those unstables. Later, a somewhat similar notion of u-measures was
introduced by Pesin and Sinai in [11], in the context of partially hyperbolic attractors.
These measures are characterized by the fact that the conditional measures they generate
on unstable manifolds are absolutely continuous with respect to the leaf volume, but
these measures may lack some good ergodic properties due to presence of zero Lyapunov
exponents in the central direction of the partially hyperbolic system.

Let us mention some recent results on the existence of SRB measures in the partially
hyperbolic case. Burns et al [7] proved that under the assumptions that the Lyapunov
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exponents in the central direction are negative on a set of positive measure and global
unstable leaves are dense, the u-measure turns out to be the unique SRB measure. Bonatti
and Viana [5] proved the existence of an SRB measure assuming a splitting TM =
Es ⊕ Euu, with uniform expansion in the Euu-direction and non-uniform contraction in
the Es-direction. Alves, Bonatti, and Viana [1] proved the existence of SRB measures
under the assumption that the splitting is of the form Ess ⊕ Eu. This last result was
generalized by Climenhaga, Dolgopyat, and Pesin [8], who only assumed the splitting to be
measurable and the expansion and contractions are both non-uniform. They established the
existence of SRB measures under the assumption of effective hyperbolicity. Ben Ovadia
[4] constructed SRB measures under a certain leaf condition, which we will introduce and
discuss later in more detail. His construction uses the theory of Markov partitions and the
thermodynamical formalism developed by Sarig in [15] for countable topological Markov
shifts.

One observation about all the papers mentioned above is that they deal only with the
forward dynamics of the system, and so they look at the forward Lyapunov exponents,
and ask, given that we have a positive volume of points with non-zero forward Lyapunov
exponents, what can we say about the existence of the SRB measure. In this paper, we
consider the forward and backward behavior of Lyapunov exponents, and ask what can we
say about the natural measures for the system? So the central assumption in this paper is
the positivity of the Riemannian volume of the set of hyperbolic Lyapunov–Perron regular
points, which we define next.

Definition 1.1. A point x ∈ M is Lyapunov–Perron regular for a diffeomorphism
f : M → M if there exist numbers λ1(x) ≤ λ2(x) ≤ · · · ≤ λk(x)(x) and an invariant
decomposition

TxM =
k(x)⊕
i=1

Ei(x)

such that for all v ∈ Ei(x), we have

lim
n→±∞

1
n

log ‖Dxf nv‖ = λi(x),

lim
n→±∞

1
n

log ‖ det(Dxf n)‖ =
k(x)∑
i=1

λi(x),

and that λi(x), Ei(x), and k(x) depend measurably on x. We denote the set of all
Lyapunov–Perron regular points by R.

Definition 1.2. (Hyperbolic Lyapunov–Perron regular points) We say that x is a hyperbolic
Lyapunov–Perron regular point if it was a Lyapunov–Perron regular point, and if there
exists an integer 1 ≤ s < k(x) for which we have λs(x) < 0 < λs+1(x). We denote the set
of all hyperbolic Lyapunov–Perron regular points by Rhyp.

The celebrated Oseledets’ multiplicative ergodic theorem states that any invariant
probability measure μ for a diffeomorphism f : M → M gives full measure to the set
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of Lyapunov–Perron regular points. That is, μ(R) = 1. In particular, an SRB measure μ+
for f gives full measure to the subset Rhyp ⊂ R of hyperbolic Lyapunov–Perron regular
points. Notice that this does not necessarily imply that the the set Rhyp has positive volume.
Indeed, for a point x in the basin of attraction of the SRB measure μ+,

B(μ+) =
{
x ∈ M | 1

n

n−1∑
k=0

ϕ(f kx) −→
∫
M

ϕ dμ+ for all ϕ ∈ C0(M , R)
}

,

one has that the limit

lim
n→∞

1
n

log ‖Dxf nv‖
exists, but nothing can be said about this limit as n → −∞.

The conjecture of Viana mentioned above is difficult to tackle as is. On the one hand,
simply assuming that points with non-zero Lyapunov exponents exist does not seem to
be enough to show that SRB measures exist. On the other hand, it is hard to construct
a counter example. We instead add the assumption that the set of points with non-zero
Lyapunov exponents which are also Perron–Regular and satisfy a recurrence condition
have positive volume. The main question with which this paper deals is:

What can we say about the dynamics of f if the set of Lyapunov–Perron regular points
which are hyperbolic, has positive volume?

In this paper, we give an answer to the above question, under the assumption that the set
RPR ⊂ Rhyp of positively recurrent Lyapunov–Perron regular points (see Definition 4.6)
has a positive volume. This set consists of points that return infinitely often to a Pesin
block along the orbit. The reason for considering such a set is that, under the condition of
positivity of volume, one can show that the maps f and f−1 preserve SRB measures, see
for example Theorem 5.1. The answer to the above question turns out to be that asking for
the set of positively recurrent hyperbolic Lyapunov–Perron regular points to have positive
volume is too much; the system not only preserves SRB measures, but these measures are
actually absolutely continuous with respect to volume.

1.1. Structure of the paper. The rest of the paper is divided as follows. In §2, we will
discuss a toy model and prove our main theorem in this special case. The proof here
illustrates the main components of the proof of the general theorem. In §3, we introduce
ergodic homoclinic components and prove the main result of this paper: we give conditions
under which an SRB measure is absolutely continuous with respect to volume. In §4,
we introduce the main object of this paper, the set RPR

hyp. We also introduce the set of
non-uniformly hyperbolic points and discuss Markov partitions of this set. We end the
section by proving another central proposition to our argument (Theorem 4.18). In §5, we
complete the proof of our main theorem.

2. Informal discussion of the results
2.1. A toy model. Let f : M → M be a diffeomorphism of a compact smooth Rieman-
nian manifold preserving a hyperbolic smooth measure μ. By Oseledets’ multiplicative
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ergodic theorem, the setRhyp of all hyperbolic Lyapunov–Perron regular points has positive
Riemannian volume. In this paper, we consider the following problem:

Does the opposite hold, namely ifRhyp has positive volume, can we conclude that f
preserves a hyperbolic smooth measure?

To illustrate our approach, we consider the following toy problem (the case of Anosov
diffeomorphisms):

Letf : M → M be a transitive Anosov diffeomorphism, and assume that the set of
Lyapunov–Perron regular pointsR has positive volume, can we conclude that f preserves a
smooth measure?

The following theorem give an affirmative solution to this problem.

THEOREM 2.1. Let f : M −→ M be a transitive C1+α Anosov diffeomorphism of com-
pact Riemannian manifold M, and assume that Vol(Rhyp) > 0, then the system preserves a
unique smooth measure μ which is equivalent to volume.

According to Bowen [6], a transitive Anosov diffeomorphism has exactly one SRB
measure, which is ergodic, and if a smooth measure is preserved, then it is the unique
SRB measure. Therefore, the natural approach is to work with the unique SRB measure
for f, μ+, and try to prove that it is actually a smooth measure. Now if μ+ is a smooth
measure, then it is straight forward to show that the sum of Lyapunov exponents is zero.
The good news is that the opposite also holds.

LEMMA 2.2. Let μ+ be an SRB measure for a diffeomorphism f : M → M of a compact
smooth Riemannian manifold M. Assume that the sum of all Lyapunov exponents is zero at
μ+-a.e. point. Then μ+ is a smooth measure.

This lemma holds for general C1+α diffeomorphisms preserving an SRB measure, we
prove this lemma in §3.

Using this, a natural strategy would be to prove that the sum of Lyapunov exponents
of μ+ is zero. Let us denote the Lyapunov exponents of μ+ by χ1(μ

+) ≤ · · · ≤ χn(μ
+),

then by Ruelle’s inequality and the entropy formula for μ+, we have that

n∑
i=1

χi(μ
+) ≤ 0.

Since f−1 is also an Anosov diffeomorphism, it has an SRB measure μ−, which is
characterized by absolutely continuous conditional measures along local stable manifolds.
As is the case of the measure μ+, if f preserves a smooth measure, then it is in fact μ−,
and hence μ+ = μ−. Note that in general, μ− is not equal to μ+; in fact, this happens only
in a very specific situation.

LEMMA 2.3. Let f : M → M be a C1+α diffeomorphism, and let μ be an SRB measure
for both f and f−1, then μ is a smooth measure.
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The lemma is an immediate consequence of Lemma 2.1 above and the entropy formula,
and holds for general C1+α , not only Anosov diffeomorphisms, again we will prove it in
§3 of this paper.

This naturally leads us to trying to show that μ+ = μ−. To do this, assume that there
exists a point x ∈ M whose forward Lyapunov exponents are controlled by μ+, that is,

χ+
i (x) = χi(μ

+) for all i = 1, . . . , n,

and whose backward Lyapunov exponents are controlled by μ−, that is,

χ−
i (x) = χi(μ

−) for all i = 1, . . . , n.

This by itself does not give anything, but if in addition we know that x ∈ R, we can
immediately conclude that

χn−i+1(μ
−) = −χi(μ+)

for all i = 1, . . . , n. So in particular, we see that∑
i

χi(μ
+) = −

∑
i

χi(μ
−). (2.1)

Using now Ruelle’s inequality applied to both f and f−1, we obtain that∑
i

χi(μ
+) ≤ 0 and

∑
i

χi(μ
−) ≤ 0.

Combing this with equation (2.1), yields∑
i

χi(μ
+) = 0 =

∑
i

χi(μ
−).

Using Lemma 1, we see that both μ+ and μ− are smooth measures, and hence, by
uniqueness, we conclude that μ+ = μ− is the unique smooth measure preserved by f.

It is therefore enough to prove the existence of such a point x, the proof of which is not
difficult in this case and we sketch it here. First, since Vol(R) > 0, we can prove, using the
absolute continuity properties of the stable and unstable manifolds, that there exists a point
(actually a positive volume of points) such that:
(1) x is a Lyapunov–Perron regular point;
(2) the local unstable manifold V uloc(x) at x contains a positive leaf volume of

Lyapunov–Perron regular points;
(3) the local stable manifold V sloc(x) at x contains a positive leaf volume of

Lyapunov–Perron regular points.
Now, since μ+ and μ− are SRB measures for f and f−1 respectively, we know that for

μ+/μ−-almost all points x+/x−, almost all points on the local unstable manifold V uloc(x
+)

with respect to leaf volume are Lyapunov–Perron regular. Furthermore, almost every such
point has Lyapunov exponents controlled by μ+. That is, setting

R(μ) = {y ∈ R | χi(x) = χi(μ) for i = 1, . . . , n},
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FIGURE 1. The images of the unstable manifold Wu
loc(x

+) become more and more dense in the space under
the map f . Therefore, for some n+ > 0, one can find Du ⊂ f n

+
Wu

loc(x
+) which is very close to the unstable

manifold Wu
loc(x), so thatDu intersects all the local stable manifolds of points in Wu

loc(x).

we have that

mVuloc(x
+)(V

u
loc(x

+) ∩ R(μ+)) = 1 and mV sloc(x
−)(V

s
loc(x

−) ∩ R(μ−)) = 1.

Now, we note that when f is Anosov, then⋃
n≥0

f n(V uloc(x
+))

is dense in M and hence, there is an n ≥ 0 such that f n(V uloc(x
+)) contains an embedded

diskDu which is really close to the local unstable V uloc(x) in the C1 topology as in Figure 1
below.

Therefore, the holonomy map

�s : V uloc(x) → Du

given by

�s(z) := Ws
loc(z) ∩Du

is well defined. One can show that (using Lemma 3.11, which we prove in §3) Du satisfies

mDu(D
u ∩ R(μ+)) = 1.

Now, the holonomy map �s has the absolute continuity property. Therefore, we can see
that (�s)−1(Du ∩ R(μ+)) has full leaf volume in V uloc(x).

Although the forward Lyapunov exponents of two points on the same stable manifolds
coincide, it is not, in general, true that points on the stable manifold of a Lyapunov–Perron
regular point are also Lyapunov–Perron regular. This is because a priori we can not
compare their backward behavior. So, in general, the pre-image of Du ∩ R(μ+) under
the holonomy map does not necessarily lie in R(μ+). However, in our situation, we
have chosen x so that its unstable local manifold contains a positive leaf volume of
Lyapunov–Perron regular points and hence,

mVuloc(x)
(V uloc(x) ∩ R ∩ (�s)−1(Du ∩ R(μ+))) > 0.
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Now the set V uloc(x) ∩ R ∩ (�s)−1(Du ∩ R(μ+)) consists of Lyapunov–Perron regular
points, which lie on the stable manifold of some point in R(μ+), using Lemma 3.13 (which
we prove in §3); therefore, we see that we have in fact mVuloc(x)

(V uloc(x) ∩ R(μ+)) > 0.
Since x ∈ R, we see that this implies, using Lemma 3.13, that the Lyapunov exponents of
x with respect to f coincide with the Lyapunov exponents of μ+.

Similarly, we see that

mV sloc(x)
(vsloc(x) ∩ R(μ−)) > 0

and that this again implies that that the Lyapunov exponents of x with respect to f−1

coincide with the Lyapunov exponents of μ−, and that is exactly what we needed
to show.

So, at least in this toy model, we see that the positivity of volume of the set of
hyperbolic Lyapunov–Perron regular points can only be explained by the fact that the
system preserves a smooth measure. This paper addresses the problem in the more general
case of non-uniformly hyperbolic systems.

2.2. The main result. The approach we have outlined for the toy model cannot be
immediately generalized to the case of non-uniformly hyperbolic systems for a few reasons.
First, we need to start with SRB measures for f and f−1, whose existence is not trivial for
general systems. Second, even if we know that the system admits two SRB measures μ+
and μ− for f and f−1 respectively, the images under f of a μ+-typical local unstable
manifold, V uloc(x

+), do not necessarily fill in the space M, and in particular, we may not be
able to bring f n(V uloc(x

+)) close to V uloc(x) for any n ≥ 0. Third, even if we overcome the
first two obstacles, we still need to relate the unstable f n(V uloc(x

+)) and V uloc(x) using local
stable manifolds, since the holonomy maps, used in the proof of the model case, may not
be well defined. This last problem arises from the non-uniformity of the sizes of unstable
and stable manifolds for general non-uniformly hyperbolic systems.

We will tackle these issues in order, the first of which is the existence of SRB
measures for both f and f−1. The main difference between the toy model and the general
non-uniformly hyperbolic case is that now, it is not obvious if SRB measures exist, even
when Vol(Rhyp) > 0. Recently Ben Ovadia [4] proved the existence of SRB measures for
f under a leaf condition. We will expand on this later, but roughly speaking, the idea is
that if there exists an unstable manifold with positive leaf volume of points on it which
are hyperbolic and positively recurrent (meaning that the unstable and stable manifolds
return to a uniform size frequently along the forward orbit), then the system admits an
SRB measure μ+. We will use this to prove the existence of SRB measures μ+ and μ− for
f and f−1. Assuming that the set RPR ⊂ Rhyp of positively recurrent points has positive
volume, we will describe RPR more precisely, but for now, we can say that it consists of
hyperbolic Lyapunov–Perron regular points whose stable and unstable manifolds return to
uniform sizes frequently along the forward and backward orbits.

To deal with the second problem, we divide the set RPR into possibly countably many
subsets, such that each of these subsets have forward and backward images that lie very
close to two hyperbolic points, and then make sure that the SRB measures we constructed
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lie in the ergodic homocolinic classes (introduced in [12]) of these two hyperbolic points.
This will allow us to conclude that each of these subsets, which we obtained by dividing
RPR, lie in the basin of attraction of the two SRB measures, and with a little bit more work,
we will also be able to overcome the third obstacle.

Thus we get our the main theorem of this paper.

THEOREM 2.4. (Main Theorem) Let f : M −→ M be a C1+α diffeomorphism of a
compact Riemannian manifold M, and assume that the set of hyperbolic positively
recurrent Lyapunov–Perron regular points RPR

hyp has positive volume, then f preserves a
smooth measure.

Our main theorem is an immediate consequence of the following more technical
theorem, which we will prove in §5 of this paper.

THEOREM 2.5. Let f : M → M be a C1+ diffeomorphism, and assume that
Vol(RPR

hyp) > 0. Then there exists at most countably many ergodic absolutely continuous
measures μ1, μ2, . . . such that Vol-a.e. point in RPR

hyp is Tsuji regular for μn, for some
n ≥ 1.

Tsuji regularity was first defined in [17]. We include the definition here for complete-
ness.

Definition 2.6. [17] Let f : M −→ M be a C1+α diffeomorphism on a smooth Rieman-
nian manifold, and let μ be an ergodic invariant measure. We say that a point x ∈ M is
forward Tsuji regular for μ if the following hold.
(1) (1/n)

∑n−1
k=0 δf kx −→ μ in the sense of the weak topology.

(2) The Lyapunov exponents of x with respect to f coincide with the Lyapunov exponents
of μ.

We say that x ∈ M is forward Tsuji regular for μ if it is forward Tsuji regular for μ with
respect to f−1. We say that x ∈ M is Tsuji regular for μ if it is both forward and backward
Tsuji regular.

The condition Vol(RPR) > 0, as we will see, guarantees the existence of the SRB
measures. The next step is to relate the SRB measures to each other, but here we encounter
another problem. It is possible that the system admits countably many ergodic SRB
measures for f and countably many ergodic SRB measures for f−1 and the question
then is:

Which ones are related to which ones?

We approach this issue by examining the construction of the SRB measures more
closely, and then construct two specific SRB measures μ+ and μ− so that they are related
almost by construction. To do that, we will have to deal with the symbolic representation
of the dynamics on the set RPR, and we will have to consider the more general set RWTχ
which was introduced in [4].
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The next issue we will deal with is:

Why should there be ann ≥ 0 such thatf n(V uloc(x
+)) and the local unstable manifold of

another chosen point x,V uloc(x) , are close to each other so that the stable holonomy map
as in the toy model could be defined?

We will resolve this by considering homoclinic ergodic classes as introduced in [12].
We will choose x ∈ RPR so that it is in both of the homoclinic ergodic classes supporting
μ+ and μ−, and then using arguments inspired by those in [4], we will replicate the proof
of the toy model case.

The last issue we will tackle is to show that the resulting absolutely continuous measures
μ+ and μ− are actually equal to each other. Along the way, we will prove an analog of
Lemmas 1 and 2 for general non-uniformly hyperbolic systems.

3. The entropy argument
The main goal of this section is to prove the following proposition.

PROPOSITION 3.1. Let P+ and P− be two hyperbolic periodic points. Let R+ and
R− be two rectangles at P+ and P− respectively. Let x0 ∈ Rhyp be a hyperbolic
Lyapunov–Perron regular point. Let us assume the following items.
(1) Each of the homoclinic ergodic classes H(P+) and H(P−) supports a unique SRB

measure μ+ for f and μ− for f−1 respectively.
(2) There is an unstable W+ in the rectangle R+ for which we have:

(a) mW+(W+ ∩ R+ ∩ Rhyp) > 0;
(b) f−n+

(W+) ⊂ V uloc(x0), for some n+ > 0.
(3) There is a stable W− in the rectangle R− for which we have:

(a) mW−(W− ∩ R− ∩ Rhyp) ≥ 0;
(b) f n

−
(W−) ⊂ V sloc(x0), for some n− ≥ 0.

Then both μ+ and μ− are absolutely continuous with respect to volume.

This proposition is one of the key component of the proof of the main theorem. We will
use it to prove that the SRB measures we construct later are absolutely continuous with
respect to volume.

3.1. u-measures and s-measures

Definition 3.2. (Global unstable manifolds) Let x ∈ Rhyp, then the global unstable
manifold at x, which we denote by Wu(x), is defined to be

Wu(x) :=
⋃
n≥0

f n(V uloc(f
−n(x))).

This set is an immersed submanifold of M (see [2]).

Definition 3.3. (Partition subordinate to unstable manifolds) Let f : M −→ M be aC1+α ,
and let μ be an invariant measure with at least one non-zero Lyapunov exponent, then we
say that a measurable partition ξu is subordinate to unstable manifolds if it satisfies the
following properties:
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(1) ξu(x) is an open subset of Wu(x), for μ-a.e. x ∈ M;
(2)

∨
n≥0 f

−nξu = ε, the partition by points;
(3) f−1ξu ≥ ξu;
(4)

∧
n≥0 f

nξu = Wu, where Wu is the partition by global unstable manifolds.

Definition 3.4. (u/s-measure) An invariant measure μ is a u-measure if, given any
measurable partition ξ subordinate to unstable manifolds, the conditional measures μux
along ξ(x) are absolutely continuous with respect to leaf volume for μ-a.e. x. A measure
μ is an s-measure if it is a u-measure for f−1. A u-measure which is also hyperbolic is
called an SRB measure for f. Similarly, an s-measure which is also hyperbolic is called an
SRB measure for f−1.

There are many ways to characterize SRB measures, but one of the most remarkable
characterizations is the following theorem of Ledrappier and Young [9].

PROPOSITION 3.5. (The entropy formula) Let f : M → M be a C1+α diffeomorphism.
Then a measure μ is an SRB measure for f if and only if the Pesin entropy formula holds

hμ(f ) =
∫
M

∑
i

λ+
i (x) dμ(x),

where λ+
i (x) = max{λi(x), 0}. Similarly, μ is an SRB measure for f−1 if and only if

hμ(f ) =
∫
M

∑
i

−λ−
i (x) dμ(x),

where λ−
i (x) = min{λi(x), 0}.

LEMMA 3.6. Let f : M → M be a C1+α diffeomorphism and let μ be an SRB measure
for f. Let ξu be a measurable partition subordinate to unstable manifolds. Then for μ-a.e
x ∈ M , the conditional measure μξu(x) and normalized leaf Riemannian volume mξu(x)
are equivalent.

Proof. In [9, Corollary 6.14], the authors show that for μ-a.e. x ∈ M , one has that the
conditional measure μξu(x) is absolutely continuous with respect to the Riemmanian
volume along the global unstable manifold V u(X), mξu(x), with a density ρ which is
strictly positive on ξu(x). By straightforward measure theory, one can show that this
implies that the two measures μξu(x) and mξu(x) are equivalent.

The main goal of this paper is to establish that a diffeomorphism preserves a measure
absolutely continuous with respect to volume under some conditions. The strategy we are
following is to to establish the existence of a measure μ which is an SRB measure for both
f and f−1 at the same time. The goal for the remainder of this section is to establish some
conditions under which an SRB measure for f is also an SRB measure for f−1, which
implies that it is actually absolutely continuous with respect to volume.

LEMMA 3.7. A hyperbolic measure μ is absolutely continuous with respect to volume if μ
is both an SRB measure for f and for f−1.
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To the best of our knowledge, this statement appears in the paper [11] and in the book
[2], but an explicit proof has not been given, so for completeness, we provide a proof of
the statement.

Proof of the lemma. Let E ⊂ M be such that μ(E) > 0, and let x ∈ E be a density point
for x such that mux(E) > 0 and msx(E) > 0, where mux and msx are leaf volumes along the
unstable and stable manifold of x respectively; such a point exists since the conditional
measures μux and μsx of μ along the unstable and stable manifolds are equivalent to leaf
volumes for μ-a.e. x ∈ M .

Now locally, volume can be written as the product of the two leaf volumes mux and
msx , that is, Vol ∼ mux ×msx . Hence, we see that Vol(E) > 0, which implies that μ <<
Vol.

The following observation is a simple corollary of the above lemma, the entropy
formula, and Ruelle’s inequality.

LEMMA 3.8. An ergodic SRB measure μ for f satisfies∑
i

λi(f , μ) ≤ 0

and equality holds if and only if it is absolutely continuous with respect to volume.

Proof. The inequality is an immediate consequence of the Pesin entropy formula and the
Ruelle inequality, following the argument used in the proof of Lemma 2.3. Since μ is an
SRB measure, we have

hμ(f ) =
∑
i

λ+
i (x)d.

Now, since the average of the sum of the Lyapunov exponents is zero, we see that∑
i

λ+
i (x) =

∑
i

−λ−
i (x)d,

and since hμ(f ) = hμ(f
−1),

hμ(f
−1) = hμ(f ) =

∑
i

λ+
i (x) =

∑
i

−λ−
i (x).

Hence, μ is also an SRB measure for f−1, and therefore, absolutely continuous with
respect to volume.

3.2. Global manifolds and rectangles. We will need the following definition of hyper-
bolic rectangles.

Definition 3.9. Let f be a C1+α diffeomorphism of a smooth compact Riemannian
manifold M. Let 0 < λ < 1 < ν, ε > 0, j be an integer between 1 and dim(M)− 1, and
� > 0. Consider the Pesin block 
� := 
�λ,ν,ε,j . We say that R ⊂ M is a δ-rectangle at a
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point w ∈ 
� if w ∈ R ⊂ B(w, δ) ∩
ψ(�), and for any x, y ∈ R, we have

V s(x) ∩ V u(y) ∈ R,

where V s(z) and V u(z) are the local stable land unstable manifolds for z ∈ 
�, and ψ(�)
is defined so that for any x ∈ 
� and y ∈ 
� ∩ B(x, δ�), one has V s(x) ∩ V u(u) ∈ 
ψ(�),
where δ� is the scale at which we see local products in 
�.

We say that an unstable manifold W+ is in R if it is the local unstable manifold of a
point in R. We say that a stable manifold W− is in R if it is the local stable manifold of a
point in R.

Definition 3.10. Let μ be an ergodic invariant measure. We define the set R(μ) by

R(μ) = {x ∈ R | λi(x) = λi(μ)}.
This is an invariant set, and one has by Oseledets’ multiplicative ergodic theorem that
μ(R(μ)) = 1.

We will need the following lemma to show that global unstable manifolds intersect the
set R(μ) in a set of full leaf volume when μ is an SRB measure.

LEMMA 3.11. Let μ be an ergodic SRB measure for f. Let E be an invariant set of non-zero
μ measure. Then for μ-a.e. point x ∈ M , the following is satisfied: any compact subset D
of the global unstable manifold Wu(x) intersects E in a set of full measure inside D, with
respect to the Riemannian volume mWu(x) on Wu(x).

Proof. Step 1. First, since μ is ergodic and E is invariant of positive μ measure, we know
that μ(E) = 1. Now, let ξu be a measurable partition subordinate to unstable manifolds.
Then, since μ is an SRB measure, we know from Lemma 3.6 that for μ-a.e. point x ∈ M ,
one has that μξu(x) is equivalent to mξu(x),the leaf volume restricted to ξu(X). Now, since
μ(E) = 1, we know that for μ-a.e. x ∈ M , we have that μξu(x)(ξu(x) ∩ E) = 1, and since
μξu(x) and muξu(x) are equivalent for μ-a.e. point x, we see that this implies that we have
mξu(x)(ξ

u(x) ∩ E) = 1 for μ-a.e x ∈ M .
Step 2. From [2, Proposition 9.4.1], we know that there is a measurable function β :

M −→ (0, r0), such that for μ-a.e. x ∈ M , ξu(x) contains the neighborhood of x defined
by {y ∈ Wu(x) | dWu(x)(x, y) < β(x)}. Let us fix r1 > 0 to be small enough so that the
measurable set

{w ∈ M | β(w) ≥ r1}
has positive μ-measure. Then by ergodicity of μ, we see that for μ-a.e. x ∈ M , one can
find infinitely many times n ≥ 0 for which we have the following.
(1) mξu(f−nx)(ξ

u(f−nx) ∩ E) = 1.
(2) β(f−nx) ≥ r1.
However, we know that for all large enough times n > 0, we have

f−n(V uloc(x)) ⊂ {
y ∈ Wu(f−nx) | dWu(f−nx)(f

−nx, y) < 1
2 r1

}
.
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Therefore, for a time n large enough, which also satisfies (1) and (2), we see that we actually
have

f−n (
V uloc(x)

) ⊂ ξu(f−nx),

and from condition (1) above, we see that we have mf−n(V uloc(x))
(f−n(V uloc(x)) ∩ E) = 1,

and since the pushforward of the measure mf−n(V uloc(x))
under the map f n is equivalent

to the leaf volume mVuloc(x)
, and since E is invariant, we see that this implies that

mVuloc(x)
(V uloc(x) ∩ E) = 1.

Step 3. Now, since D is a compact subset of Wu(x), we can find a time n, for which we
have f−n(D) ⊂ V uloc(f

−nx). From steps 1 and 2 above, we see that this implies that E ∩
f−n(D) has full measure inside f−n(D) with respect to the leaf measuremf−n(V uloc(x))

, for
μ-a.e. x ∈ M , which in turn implies the lemma.

The main lemma in this subsection is the following.

LEMMA 3.12. Let μ be an SRB measure for f, let R be a hyperbolic rectangle, and let Du

be a local transversal to all stable manifolds in the rectangle R. Assume furthermore that
mDu-a.e. point in Du is in R(μ). Then for any unstable W+ in R, we have that mW+-a.e.
point in W+ ∩ R ∩ Rhyp is in R(μ).

This lemma allows us to control the Lyapunov exponents of Lyapunov–Perron regular
points lying in a hyperbolic rectangle through the Lyapunov exponents of an SRB measure,
and is central to the proof of the main proposition of this section. To prove this lemma, we
will the following two lemmas.

LEMMA 3.13. [17, Proposition 16(3)] Let x0 ∈ Rhyp be a hyperbolic Lyapunov–Perron
regular point. Assume that x is a point such that we have one of the following satisfied:
(1) x ∈ V uloc(x0) ∩ Rhyp;
(2) x ∈ V sloc(x0) ∩ Rhyp.
Then the points x0 and x have the same Lyapunov exponents with respect to f.

Remark 3.14. For more details on Lemma 3.13, see [17, Proposition 16(3)], and
in particular the proof where the author uses this lemma to prove item (3) in
proposition 16.

We also need the following well-known inclination lemma.

LEMMA 3.15. (Inclination lemma) Let f : M −→ M be a C1 diffeomorphism on a
Riemannian manifold M. Let p be a fixed hyperbolic point. Let B ⊂ Wu(p) be an
embedded C1 disk of the same dimension as Wu(p). Let D be a C1 embedded disk
transversal to the Ws(p) of the same dimension as Wu(p). Then for any ε > 0, there
is an n0 ≥ 0, such that for an n ≥ n0, f n(D) contains a C1 embedded disk which is ε
close to B in the C1-topology.

Now we are ready to prove Lemma 3.12.
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Proof of Lemma 3.12. Let us fix an unstable W+ in R. Then we can define the stable
holonomy map

�s : W+ ∩ R −→ Du ∩ R
defined by �s(x) := V sloc(x) ∩Du. We can see that this is a well-defined map since Du is
a transversal to stable manifolds in R. This map is absolutely continuous with respect to the
Riemmanian volume onW+ andDu, that is, (�s)∗(mDu|Du∩R ) is equivalent tomW+|W+∩R .
Now, let us consider the (�s)−1(Du ∩ R ∩ R(μ)) ⊂ W+ ∩ R. We see that since Du ∩
R(μ) has full measure with respect to the measure mDu , it has full measure with respect
to the restriction mDu |Du∩R , and by absolute continuity of the stable holonomy map �s ,
this implies that (�s)−1(Du ∩ R ∩ R(μ))) has full measure with respect to the restriction
mW+|W+∩R . This implies that (�s)−1(Du ∩ R ∩ R(μ)) ∩ Rhyp has full measure inside
W+ ∩ R ∩ Rhyp with respect tomW+|W+∩R . Now, the set (�s)−1(Du ∩ R ∩ R(μ)) ∩ Rhyp

consists of all those points in W+ ∩ R which are in Rhyp, and at the same time are on the
stable manifold of a point in R(μ). Using Lemma 3.13, we see that this implies that these
points are in R(μ), which implies the lemma.

3.3. Ergodic homoclinic classes. In [12], the authors introduce ergodic homoclinic
classes.

Definition 3.16. [12] Let P ∈ M be a hyperbolic periodic point and let

Hu(P ) := {x ∈ Rhyp | Ws(x) � Wu(O(P )) 
= ∅},
Hs(P ) := {x ∈ Rhyp | Wu(x) � Ws(O(P )) 
= ∅}.

We define the ergodic homoclinic class of P by H(P ) = Hu(P ) ∩Hs(P ).

The reason why these homoclinic classes were introduced is to better understand the
ergodic components of SRB and smooth measures, precisely, the authors of [15] and [16]
prove the following result.

PROPOSITION 3.17. Let μ be an SRB measure for a C1+α diffeomorphism f : M → M .
Then the following statements hold:
(1) if μ(H(P )) > 0, then the restriction μ|H(P ) is an ergodic SRB measure;
(2) given any ergodic SRB measures μ1 and μ2 such that μ1(H(P )) > 0 and

μ2(H(P )) > 0, one has μ1 = μ2.

There are two main reasons we wish to work with ergodic homoclinic classes in our
case. First, they allow us to extend the transitivity argument in the proof of the toy model.
The following proposition captures this precisely.

Remark 3.18. For a given point x inside a Pesin block
�, we denote byWu
� (x) andWs

� (x)

the maximal dimensional local unstable and stable manifolds at x, with size bounded below
by e−�.

LEMMA 3.19. Let P be a hyperbolic periodic point. Let R be rectangle containing P. Let μ
be an ergoidic SRB measure supported on the ergodic homoclinic class H(P ). Then there
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FIGURE 2. The inclination lemma implies that, for a large N , f N(Du) is very close to the unstable manifold of
the periodic point P . Since the unstable manifold of the point P intersects all the stable manifolds of points in

the rectangle R, we see that f N(Du) does too.

is a local transversalDu for all stable manifolds in R, such that mDu-a.e. point inDu is in
R(μ).
Proof. Since the set R(μ) is invariant for f, and has full measure with respect to R, we see
that μ-a.e. point x ∈ M satisfies the conclusion of Lemma 3.11. Let us fix such a point and
denote it by xu. Since μ is supported on μ(H(P )) = 1, we can assume without loss of
generality that xu ∈ H(P ). Let xu0 be a point in Wu(xu) � Ws(P ), where this point exists
by the assumption that xu ∈ H(P ). LetD ⊂ Wu(xu) be an embedded disk containing the
intersection point xu0 , and let p ≥ 0 be the period of the hyperbolic periodic point P. Then
for any ε > 0, the inclination lemma allows us to findN > 0 such that f Np(D) contains an
embedded diskDu, such that dC1(Du, V uloc(P )) < ε (see Figure 2). By taking ε > 0 small
enough, we can ensure that Du is transversal for all stable manifolds in R, since V uloc(P ) is
a transversal to all stable manifolds in R.

Now, we are ready to prove the min proposition of this section, Proposition 3.1.

Proof of Proposition 3.1. Using Lemma 3.19, we see that we can find a local tran-
versal Du to all stable manifolds in R+, and such that mDu-a.e. point in Du is in
R(μ+). Using Lemma 3.12, we see that this implies that mW+-a.e. point in W+ ∩
R+ ∩ Rhyp is in R(μ+), and by condition (2) in the proposition, we see that we have
mW+(W+ ∩ R(μ+)) > 0. By replacing f by f−1, we see that the same exact argument
implies that we also have mW−(W− ∩ R(μ−)) > 0. Now, using the fact that R(μ+) and
R(μ−) are invariant sets for f, and conditions (2) and (3) in the proposition, we see
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thatmVuloc(x0)(V
u
loc(x0) ∩ R(μ+)) > 0 andmV sloc(x0)(V

s
loc(x0) ∩ R(μ−)) > 0. Using Lemma

3.13, we see that the Lyapunov exponents of x0 with respect to f coincide with the
Lyapunov exponents of f with respect to the SRB measure μ+, and that the Lyapunov
exponents of x0 with respect to f−1 coincide with the Lyapunov exponents of f−1 with
respect to the measure μ−. By the regularity of the point x0, we know that the Lyapunov
exponents of x0 with respect to f−1 are the negative of the Lyapunov exponents of x0 with
respect to f. In particular, this means that we have∑

i

λi(f , μ+) = −
∑
i

λi(f
−1, μ−);

however, using Lemma 3.8, we see that we have∑
i

λi(f , μ+) ≤ 0

and that we also have ∑
i

λi(f
−1, μ−) ≤ 0.

Therefore, we see that we end up with∑
i

λi(f , μ+) = 0 =
∑
i

λi(f
−1, μ−).

Using Lemma 3.8 again, we see that this implies that both μ+ and μ− are absolutely
continuous with respect to volume.

4. Non-uniform hyperbolicity
The second reason for considering ergodic homoclinic classes is that they have a
convenient symbolic description which we will describe in this section.

4.1. Lyapunov–Perron regularity. Our main object in this paper is the set of hyperbolic
Lyapunov–Perron regular points Rhyp, which we define next.

Definition 4.1. A point x ∈ M is Lyapunov–Perron regular for a diffeomorphism f :
M → M if there exist numbers λ1(x) < λ2(x) < · · · < λk(x)(x) and an invariant decom-
position

TxM =
k(x)⊕
i=1

Ei(x)

such that for all v ∈ Ei(x), we have

lim
n→±∞

1
n

log ‖Dxf nv‖ = λi(x),

lim
n→±∞

1
n

log ‖ det(Dxf n)‖ =
k(x)∑
i=1

λi(x),
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and so that λi(x), Ei(x), and k(x) depend measurably on x. We denote the set of all such
Lyapunov–Perron regular points by R.

Definition 4.2. A point x ∈ R is hyperbolic if λi(x) 
= 0 for all i = 1, . . . , k(x) and
λ1(x) < 0 < λk(x)(x). We denote the set of all hyperbolic Lyapunov–Perron regular points
by Rhyp. Given χ > 0, we define Rχ ⊂ Rhyp by

Rχ = {x ∈ Rhyp | |λi(x)| > χ for all i = 1, . . . , k(x)}.
We call it the set of χ-hyperbolic Lyapunov–Perron regular points.

Remark 4.3. We stress that, while by Oseledets theorem, for a given hyperbolic invariant
measure μ, almost all points with respect to μ are in Rhyp, we can easily find that Rhyp has
zero measure with respect to volume, even in the case of Anosov systems. In fact, as we
pointed out in the informal discussion above, in the case of an Anosov map, Vol(Rhyp) > 0
implies that the system preserves a smooth measure, so in general, one can expect that the
volume of Rhyp is zero.

Remark 4.4. A simple observation is that χ-hyperbolic regular points exhaust Rhyp,
that is,

Rhyp =
⋃

χ>0Rχ .

We also note that each Rχ is invariant under the action of f. In this paper, we will fix a
small χ > 0 and work with Rχ , then using the fact that they exhaust Rhyp, we will be able
to obtain our main theorem.

Definition 4.5. We define the set RPR
hyp of positively recurrent hyperbolic Lyapunov–Perron

regular points to be the set of points x ∈ Rhyp, for which there is a Pesin level set 
rx for
which we have the following two recurrence conditions satisfied:
(1) lim supn→∞(1/n)

∑n−1
k=0 1
rx ◦ f k(x) > 0;

(2) lim supn→∞(1/n)
∑n−1
k=0 1
rx ◦ f−k(x) > 0.

Remark 4.6. The definition of positively recurrent hyperbolic Lyapunov–Perron regular
points is directly by the definition of RWT PR

χ in [4]. In fact, we have that RPR
χ ⊂ RWT PR

χ .
The main difference here is that our definition concerns Lyapunov–Perron regular points,
and is also symmetric in time, while the definition of RWT PR

χ is concerned mainly with
the forward dynamics of the system.

In the course of the proof of the the main theorem, we will have to use stable and
unstable holonomy maps, and one problem is that RPR

χ is not invariant under these
holonomy maps, so we will find ourselves forced to consider the larger sets of points
RWT PR

χ , which we introduce next.

4.2. Non-uniform hyperbolicity. In [4], the author introduces the set RWTχ . This set is
larger than the set Rχ of χ-Lyapunov–Perron regular points. The author observed that the
whole theory of invariant manifolds does not require Lyapunov–Perron regularity, instead
we only need some notion of hyperbolicity. For many purposes, this set is much more
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flexible to work with than Rχ , for the simple reason that we can work with holonomy
maps on theses sets while we cannot do that with Rχ .

Definition 4.7. [4, Definition 2.1] A point x ∈ M is χ-summable if it satisfies the following
condition: There is a unique splitting TxM = Hs(x)⊕Hu(x) such that

sup
v∈Hs(x),‖v‖=1

∑
n≥0

e2nχ‖Dxf nv‖2 < ∞,

sup
v∈Hu(x),‖v‖=1

∑
n≥0

e2nχ‖Dxf−nv‖2 < ∞.

This set is denoted by χ − summ.
A point x ∈ M is χ-hyperbolic if it satisfies the following condition: There is a unique

splitting TxM = Hs(x)⊕Hu(x) such that

lim sup
n→∞

1
n

log(‖Dxf nv‖) < −χ for all v ∈ Hs(x),

lim sup
n→∞

1
n

log(‖Dxf−nv‖) < −χ for all v ∈ Hu(x).

A measure carried by χ − hyp is called a χ-hyperbolic measure.

THEOREM 4.8. [4, Theorem 2.2] For all x ∈ χ − summ, there exists an invertible linear
map Cχ(x) : Rd → TxM such that Dχ(x) = Cχ(f (x))

−1 ◦Dxf ◦ Cχ(x) has the block
decomposition

Dχ(x) =
(
Dχ

s(x) 0
0 Duχ(x)

)

with respect to the decomposition TxM = Hs(x)⊕Hu(x), where ‖Dsχ(x)v‖ ≤ e−χ‖v‖
and ‖Duχ(x)w‖ ≥ eχ‖v‖.

Definition 4.9. [4, Definition 2.3] Let ε > 0, and let x ∈ χ − summ, then

Qεχ (x) := max{Q ∈ {e−�εχ /3}�≥0 | Q ≤ 3−6/βε90/β‖Cχ(x)−1‖−48/β}.

Definition 4.10. [4, Definition 2.4] Let ε > 0. A point x ∈ χ − summ is called ε-weakly
temperable if there is a function q : {f n(x)}n∈Z −→ (0, εχ ] ∩ {e(−�εχ )/3}�≥0 such that
(1) e−εχ ≤ q ◦ f /q ≤ eεχ ;
(2) q ◦ f n(x) ≤ Qεχ ◦ f n(x), for all n ∈ Z.
We call an ε-weakly temperable point x recurrently ε-weakly temperable if we also have
lim supn→∞ q(f±(x)) > 0.

Definition 4.11. [4, Definition 2.4] and [4, Definition 7.7] The set RWTχ is defined to be
the set of all χ-summable and recurrently εχ -weakly temperable, where εχ > 0 is a fixed
small constant. The set of positively recurrent points in RWTχ is defined by
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RWT PR
χ

=
{
x ∈ RWTχ | there exists rx > 0 such that lim sup

n→∞
1
n

n−1∑
k=0

1
rx ◦ f k(x) > 0
}

.

We emphasize the dependence of RWTχ and RWT PR
χ on the map f by writing RWTχ(f )

and RWT PR
χ (f ).

Remark 4.12. An easy example that illustrates the difference betweenRχ andRWTχ is the
case of Anosov diffeomorphisms. Typically, it has two distinct SRB measures μ+ and μ−
for f and f−1 respectively. The basins of attraction of these two SRB measures as n → ∞
and as n → −∞ have full Lebesgue volume respectively, so we see that for almost all
points, the forward and backward Lyapunov exponents are different, and therefore we see
that Rhyp has zero Lebesgue volume. However, we can see that for χ > 0 small enough,
one has RWTχ = M .

4.3. The coding of the dynamics on RWTχ . The following theorem, proved in [15] for
the surface diffeomorphism case, and in [3] for the general case, is going to be a corner
stone in the proof of our main result.

PROPOSITION 4.13. [3, Theorem 1.1] Let f : M → M be a C1+α diffeomorphism. Then
there exists a locally compact graph (P, E) that induces a topological Markov shift �̂#

and a map π̂ : �# → RWT χ satisfying:
(1) π̂ is Holder continuous with respect to the word metric;
(2) π̂ ◦ σ = f ◦ π̂ ;
(3) π̂ is a finite-to-one map;
(4) π̂(�#) has full measure with respect to any χ-hyperbolic measure.

This result is a far reaching generalization of Bowen’s result for Axiom A systems [6].
While the approach follows the lines of the argument by Bowen, the technical details are
much more intricate than in the Axiom A case. To be able to use this result, we will
need a more precise understanding of the topological Markov shift and how it should be
interpreted, so for the rest of this subsection, we will give a more detailed description of
this coding and some of its properties that we are going to use.

4.3.1. The first coding. Let ρ > 0 and r > 0 be such that the exponential map expx :
Br(0) → Bρ(x) is a diffeomorphism. Let Qε(x) be the constant defined in [3, Definition
2.12], then we make the following definition.

Definition 4.14. (Pesin Charts) The Pesin chart at x,

ψηx : [−η, η]n → M ,

is defined by ψηx := expx ◦Cχ(x). A pair ψp
s ,pu

x := (ψ
ps

x , ψp
u

x ) of Pesin charts is called a
double-Pesin chart.

https://doi.org/10.1017/etds.2022.31 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.31


2196 N. Alansari

PROPOSITION 4.15. [3, Theorem 3.2] There exists a countable and locally finite graph
G = (V, E) that induces a topological Markov shift � = {u ∈ VZ | (ui , ui+1) ∈ E,
for all i ∈ Z} such that there is a map π : � → M satisfying:
(1) f ◦ π = π ◦ σ , where σ : � → � is the shift map;
(2) π is Holder continuous with respect to the word metric on �;
(3) π(�#) carries all invariant χ-hyperbolic measures of f, where

�# = {
u ∈ � | there exists a, b ∈ V such that un = a, u−m
= b for infinitely many n, m ≥ 0

}
.

The edges of the graph are a countable subset of double charts, and an edge corresponds
to the overlapping relation ψηx → ψ

η′
y . This map is typically infinite-to-one, but we can use

a Bowen–Sinai refinement procedure to get a Markov partition, as done in [3, 15].

4.3.2. The Markov partition. For any v ∈ V, we define Z[v] := π([v] ∩�#) and let
Z := {Z[v] | v ∈ V}. An essential property of Z is that it is locally finite, that is, #{Z′ ∈
Z | Z′ ∩ Z 
= ∅} < ∞ for allZ ∈ Z. This allows us to perform a Bowen–Sinai refinement
on Z to obtain a partition P, which induces a TMS (�̂, σ) and a factor map π̂ : �̂ → M

satisfying:
(1) π̂ is holder continuous with respect to the word metric;
(2) π̂ |

�̂# is finite-to-one;
(3) for all R ∈ �̂#, we have π̂(R) ∈ R0;
(4) the image of �̂# carry all χ-hyperbolic measures.
Again, from the fact that G = (V, E) is locally compact, one can prove that the new graph
is also locally compact, and from local finiteness of Z, we can see that #{Z ∈ Z | R ∈
Z} < ∞.

The map π̂ : �̂# → RWTχ is define by

π̂(R) =
⋂
n∈Z

(f n(R−n) ∩ · · · ∩ f−n(Rn)).

One also has the following proposition.

PROPOSITION 4.16. [4, Proposition 3.8] π̂(�̂#) = π(�#) = RWTχ .

Definition 4.17. [4, Definitions 4.3 and 4.23] For a chain R ∈ �̂L, the unstable of R is
defined to be V u(R) := W(R0) ∩ V u(u) for some u covering R (see [4, Definition 4.2] for
more details).

Similarly, for a chain R ∈ �̂R , the stable of R is defined to be V s(R) := W(R0) ∩
V s(u) for some u covering R (see [4, Definition 4.23] for more details).

Here, �̂L := {(Ri)i≤0 | (Ri)i∈Z ∈ �̂} and �̂R := {(Ri)i≥0 | (Ri)i∈Z ∈ �̂}.

In [4, Corollary 4.6], the author shows that V u(R) and V s(R) are actually open
submanifolds of M.

The following definition and lemma can be found in [4].
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Definition 4.18. [4, Definition 3.15] We say that R ∼ S if there exists a path
R → · · · → S from R to S and a path S → · · · → R from S to R. On the sub alphabet
of letters satisfying R ∼ R, the relation ∼ is an equivalence relation, and we denote
the equivalence class of R by 〈R〉. We define the maximal irreducible component
corresponding to R to be 〈R〉Z ⊂ �̂.

The importance of maximal irreducible components to us is that they correspond to
subsets of ergodic homoclinic components as stated in the following lemma.

LEMMA 4.19. Given R ∈ P for which R ∼ R, there exists a hyperbolic periodic point P
such that π̂(〈R〉Z) ⊂ H(P ).

Remark 4.20. In fact, as shown in [4], one can prove that given any hyperbolic measure
μ, we have H(P ) = π̂(〈R〉Z) mod μ.

The following theorem is central to the proof of the main theorem. We will use it to
show that the SRB measures we are going to construct are related in exactly the same way
as in the assumptions of the main theorem in §3.

PROPOSITION 4.21. Assume that Vol(RPR
χ ) > 0. Then there exists at most countably many

hyperbolic periodic points P+
1 , P+

2 , . . . and P−
1 , P−

2 , . . . such that the following hold.
(1) The local unstable manifold of each P+

n contains a positive volume of points in
RWT PR

χ (f ) for all n ≥ 1.
(2) The local stable manifold of each P−

n contains a positive volume of points in
RWT PR

χ (f−1) for all n ≥ 1.
(3) Vol-a.e. x ∈ RPRyχ satisfy conditions (2) and (3) of Proposition 3.1 with respect to

P+
n and P−

n , for some n ≥ 1.

Proof. Step 1. Let x ∈ RPR
χ . Then by definition, we know that there is rx > 0 and a Pesin

level set 
rx for which the following two conditions are satisfied:

lim sup
n→∞

#{0 ≤ k < n | f k(x) ∈ 
rx }
n

> 0;

lim sup
n→∞

#{0 ≤ k < n | f−k(x) ∈ 
rx }
n

> 0.

Now, by [4, Claim 7.6], we know that RPR
χ ∩
rx is contained in at most finitely many

partition elements R in the Markov partition P. Therefore, we can find two partition
elements R+ and R− in the Markov partition P, for which we have:

lim sup
n→∞

#{0 ≤ k < n | f k(x) ∈ R+}
n

> 0;

lim sup
n→∞

#{0 ≤ k < n | f−k(x) ∈ R−}
n

> 0.

Let us define RPR
R−,R+ to be the subset of RPR

χ that satisfies the two upper density
conditions above. Since P is countable, there are at most countably many partition
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elements R+
1 , R+

2 , . . . and R−
1 , R−

2 , . . . so that Lebesgue almost every point in RPR
χ lies in

the union
⋃
n RR−

n ,R+
n

. Since we assume that Vol(RPR
χ ) > 0, we can assume without loss

of generalization that the volume of each one of the sets RR−
n ,R+

n
is positive. We now fix

one of the sets constructed above and call it R±.
Step 2. Next, let R0 be an element of the Markov partition P, such that R± ∩ R0 has

positive volume. We can see that R± ∩ R0 is exhausted by images of cylinders in �̂# of
the form

C = {S ∈ �̂# | S−n− = R−, . . . , S0 = R0, . . . Sn+ = R+}.
The number of such cylinders is countable; therefore, R±

χ ∩ R0 is contained in the image
of at most countably many such cylinders, each of which has positive volume. Let us fix
one of these rectangles, and denote its image by Ĉ. Then by absolute continuity of local
stable and unstable manifolds, we can show that for Vol-a.e point x ∈ Ĉ ∩ R±, we have

mVuloc(x)
(V uloc(x) ∩ Ĉ ∩ R±) > 0,

mV sloc(x)
(V sloc(x) ∩ Ĉ ∩ R±) > 0.

Fix such a point x0 ∈ Ĉ ∩ R±
χ . Since for all y ∈ V uloc(x0) ∩ Ĉ ∩ R±, we have

dim(V uloc(x0)) = dim(V u(R(y))), we see that we can choose R ∈ �̂◦ ∩ [R0], such
that

mVu(R)(R0 ∩ Ĉ ∩ R±) > 0

and such that the partition R+ appears infinitely many times in the future of R.
Let us define R′ ∈ �̂L to be the concatenation R · (S1, . . . , R+). Then we know that
f−n+

(V u(R′)) ⊃ V u(R) ∩ Ĉ ∩ R±. Hence by the invariance of the set R±, we see that
this means that we have

mVu(R′)(R
+ ∩ R±) > 0.

Step 3. Now, since R+ is a recurring symbol for all the points in R+ ∩ R±, and since
V u(R′) gives a positive leaf measure to this set, we can see that we can construct a periodic
chain P+

L ∈ �̂L ∩ [R+]. We also have that the stable holonomy map

�s : V u(R′) ∩ R± −→ V u(P+
L)

is well defined. By the absolute continuity property of stable holonomies, we see
that V u(P+

L) gives �s(V u(R′) ∩ R±) a positive leaf measure. Now, for any point
y ∈ �s(V u(R′) ∩ R±), we know that y ∈ V s(S), where S ∈ �̂◦

R ∩ [R+], and such that
lim supn→∞ #{0 ≤ k < n | Sk = R+}/n > 0. Hence, by [4, Claim 7.6], we see that this
implies that y ∈ RWT PR

χ (f ). Therefore, we see that V u(P+
L) gives RWT PR

χ positive leaf
volume. Now, we can continue the chain P+

L to the right periodically to get a periodic
chain P+ ∈ �̂ ∩ R+, and we define the periodic point P+ to be the image of P+ under
the coding map.

Step 4. Now, we can repeat steps 2 and 3 above for the map f−1 to get the periodic point
P−. We see that all the conditions in the proposition above are satisfied.
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5. Proof of the main theorem
Now we are ready to prove the main theorem by replicating the argument in the proof of
the toy model. The first step is the following theorem proved in [4], asserting the existence
of an ergodic SRB measure supported on the image of a maximal connected component of
�# under the assumption of a leaf condition: that unstable leafs of points in the image give
positive leaf volume to RWT PR

χ . The following theorem is a reformulation of [4, Theorem
7.9].

THEOREM 5.1. [4, Theorem 7.9] Let �̃ ⊂ �̂# be a maximal connected component, and let
P be a hyperbolic periodic point in the image π̂(�̃), such that the set V uloc(P ) ∩ RWT PR

χ

has positive leaf volume. Then f preserves an ergodic SRB measure μ+ supported on
π̂(�̃) ⊂ H(P ).

Proof of the main theorem. Step 1. Let us fix a pair of periodic hyperbolic points P+
n

and P−
n constructed in Proposition 4.21. Then properties (1) and (2) of Proposition 4.21

allow us to use Theorem 5.1 to construct two SRB measures μ+ and μ− for f and
f−1 respectively, supported on the ergodic homoclinic components H(P+

n ) and H(P−
n )

respectively. Now, let us take a point x ∈ RPR
χ satisfying condition (3) of Proposition 4.21

for P+
n and P−

n . We see now that all the conditions of Proposition 3.1 are satisfied, and
therefore, each of the SRB measures μ+

n and μ−
n are in fact absolutely continuous with

respect to volume.
Step 2. A consequence of the proof of Proposition 4.21 and the construction therein is

that there is a hyperbolic rectangle R0, such that R0 ∩ RPR
χ has positive volume, and that

there are two hyperbolic rectangles R+ and R at P+
n and P−

n , and two times n+ > 0 and
n− > 0 for which we have f n

+
(R0) ⊂ R+ and f−n−

(R0) ⊂ R−. Now, since μ+
n is an

SRB for both f and f−1 (as we saw from step 1), we can show that for μ+-a.e. point x+ ∈
H(P+), one can find N > 0 and N ′ > 0 such that f N(V u(x+)) contains an embedded
C1 disk which is transversal to every stable in R+, and such that f−N ′

(V s(x+)) contains
an embedded C1 disk which is transversal to every unstable in R+, and such that each of
the transversals have a full measure of Tsuji regular points. This follows from an argument
similar to the proof of Lemma 3.19, and from Lemma 3.12. By using the fact the holonomy
maps are absolutely continuous, we immediately see that this implies that Vol-a.e. point in
f n

+
(R0) ∩ R+ is forward and backward Tsuji regular with respect to the measure μ+

n . A
similar argument can be made for μ−

n by replacing f by f−1 in the argument above. This
implies two things: first, that Vol-a.e. point in RPR

χ is Tsuji regular for both μ+
n and μ−

n for
some n ≥ 1. Second, that we in fact have μ+

n = μ−
n , since all the points in R0 are Tsuji

regular for both measures μ+
n and μ−

n .
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