We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This study aimed to investigate the relationship between the use of different types of masks (N95/filtering facepiece type 2, surgical) and Eustachian tube dysfunction in healthcare workers.
Methods
The study included 37 healthcare workers using N95/filtering facepiece type 2 masks and 35 using surgical masks for at least 6 hours per day, and 42 volunteers who are not healthcare workers using surgical masks for less than 6 hours per day. Participants’ demographic features, clinical data and Eustachian Tube Dysfunction Questionnaire scores were compared.
Results
The frequencies of autophony and aural fullness were significantly higher in the healthcare workers using N95/filtering facepiece type 2 masks. Autophony and aural fullness were significantly greater in the post-mask period than the pre-mask period. Middle-ear peak pressures and Eustachian Tube Dysfunction Questionnaire scores were higher in healthcare workers who used N95/filtering facepiece type 2 masks.
Conclusion
Healthcare workers who used N95/filtering facepiece type 2 masks had worsened middle-ear pressures and Eustachian Tube Dysfunction Questionnaire scores. Use of N95/filtering facepiece type 2 masks was associated with higher rates of autophony, aural fullness and higher Eustachian Tube Dysfunction Questionnaire scores in the post-mask period.
To evaluate the effects of oral steroids alone or followed by intranasal steroids versus watchful waiting on the resolution of otitis media with effusion in children aged 2–11 years.
Methods:
A total of 290 children with bilateral otitis media with effusion were assigned to 3 groups: group A was treated with oral steroids followed by intranasal steroids, group B was treated with oral steroids alone and group C was managed with watchful waiting. Patients were evaluated with audiometry and tympanometry.
Results:
The complete resolution rates of otitis media with effusion were higher in groups A and B than in group C at six weeks. There were no significant differences in otitis media with effusion resolution rates between the groups at three, six and nine months.
Conclusion:
Oral steroids lead only to a quick resolution of otitis media with effusion, with no long-term benefits. There was no benefit of using intranasal steroids in the management of otitis media with effusion.
This study aimed to investigate the diagnostic value of wideband acoustic absorbance testing in otitis media with effusion.
Methods:
This prospective study compared middle-ear wideband acoustic absorbance rates in three paediatric patient groups: a healthy group of 34 volunteers; 48 patients diagnosed with otitis media with effusion; and 28 patients with chronic effusion but no sign of effusion during myringotomy. The diagnostic value of absorbance testing was analysed with the receiver operating characteristic test.
Results:
The wideband acoustic absorbance rate was significantly lower in the otitis media with effusion group than in both the otitis media and healthy groups at the 0.375–2 kHz averaged mean absorbance (p < 0.017 and p < 0.001, respectively). Receiver operating characteristic analysis showed the highest diagnostic value for the 0.375–2 kHz averaged mean (area under the curve 0.984), followed by those at 1 and 1.5 kHz (area under the curve: 0.973 and 0.967, respectively).
Conclusion:
The wideband acoustic absorbance test is more accurate for detecting middle-ear effusion compared with conventional 226-Hz tympanometry. Its practicality and objectivity suggest that the wideband acoustic absorbance test may be a better alternative for diagnosing otitis media with effusion.
To explore the role of the nine-step inflation/deflation tympanometric test and resting middle-ear pressure range as predictors of barotrauma in aircrew members.
Methods:
A prospective, non-randomised study was conducted on 100 aircrew members. Resting middle-ear pressure was measured and the nine-step inflation/deflation test performed on all subjects before flights. Subjects were allocated to two groups according to resting middle-ear pressure range (group A, within the range of +26 to +100 and −26 to −100 mmH2O; group B, −25 to +25 mmH2O). All aircrew members were assessed after flights regarding the presence and the grade of barotrauma.
Results:
In both groups, the sensitivity and specificity values of the entire post-inflation/deflation test were close to those of the post-deflation part of the test. The post-deflation test had a higher negative predictive value than the post-inflation test. Ears with resting middle-ear pressure lower than −55 mmH2O experienced barotrauma, regardless of good or poor post-inflation or post-deflation test results.
Conclusion:
In an aircrew member, a resting middle-ear pressure within the range of −55 and +50 mmH2O, together with good post-deflation test results, are considered reliable predictors for fitness to fly.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.