In this study, the effect of titanium addition on the microstructure and wear behavior ofHadfield steel was investigated. To do so, four groups of samples with different titaniumcontents of 0, 0.2, 0.4 and 0.6 wt% were prepared. After casting, the samples wereaustenitized at 1100 °C for 3h and quenched in water subsequently for solution treatment. Themicrostructure of the samples was investigated using an optical microscope (OM) andscanning electron microscope (SEM). For more studies the carbide composition was analyzedvia energy-dispersive spectroscopy (EDX). A wear test was performed via a pin-on-disk weartesting machine. The results show that after heat treatment the microstructure of thetitanium-free sample is fully austenitic, while the other samples show an austeniticstructure with non-continuous carbide precipitates. It was also revealed that titaniumaddition improves the hardness and wear resistance of the samples. The highest wearresistance was observed in the sample with 0.6 wt% titanium content. It was also shownthat the predominant wear mechanisms are adhesive and tribo-chemical. Beyond this, theeffect of cold working via a hammering treatment was studied on the samples and revealedthat austenite-to-martensite transformation improves the hardness and wear resistancesignificantly.