We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Herein, we report the synthesis and characterization of a novel class of polymer composites based on onion-like carbons (OLCs)-silicon diimide by a salt-free polycondensation reaction. The pyridine-catalyzed polymerization reaction was carried out in the presence of various contents (0.1, 0.5, 1, and 2 wt%) of carboxyl-functionalized OLCs in argon atmosphere to provide composites with well-dispersed and covalently incorporated 0D nanocarbons throughout the 3D matrix of silicon diimide polymer. A strong dependency of the optical properties (UV absorbance and the photoluminescence spectra) on the content of functionalized OLCs incorporated within the polymer matrix was observed. The novel polymer composites are suitable precursors for the design of advanced and multifunctional 0D-nanocarbon–containing Si3N4-based ceramic nanocomposites.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.