We consider a fluid queue controlled by a semi-Markov process and we apply the Markov-renewal approach developed earlier in the context of quasi-birth-and-death processes and of Markovian fluid queues. We analyze two subfamilies of semi-Markov processes. In the first family, we assume that the intervals during which the input rate is negative have an exponential distribution. In the second family, we take the complementary case and assume that the intervals during which the input rate is positive have an exponential distribution. We thoroughly characterize the structure of the stationary distribution in both cases.