Molecular analysis of phytoplankton population structure has lagged behind other groups and has usually been inferred from physiological data determined from relatively few clones. Nearly every physiological measurement has shown that no single clone of any phytoplankton species can be considered truly representative of that species. One important reason why studies of phytoplankton population structure are perhaps 20 or more years behind those of other organisms is because of the necessity to establish clonal cultures prior to genetic analysis and the inability to perform fine-scale sampling under most conditions. Isozyme analysis, performed for a few species, has revealed heterozygosity between populations. In addition, fingerprinting analyses, such as Random Amplified Polymorphic DNAs (RAPDs) or multi-locus probes, have shown that phytoplankton blooms are not mono-clonal, are highly diverse and isolates are related by geographic origin. In the Southern Ocean, only two studies have been made of the population structure of phytoplankton. The first, based on quantitative genetic analysis of morphometric features, suggests that there is sufficient genetic variation in populations of Thalassiosira tumida to allow speciation in terms of major shifts in morphology under conditions of continued directional selection. The second, using sequence data from the noncoding regions of the internal transcribed spacer region (ITS) in the ribosomal cistron as a molecular marker, shows that populations of Phaeocystis antarctica within continental water masses are homogenous with little evidence of population structure. Populations found within the Antarctic Circumpolar Current are genetically distinct from others, suggesting the currents also play an important role in determining population structure in phytoplankton populations.