High-fidelity simulation tools have significant potential to support composite aircraft sustainment, though further study is required on incorporating the complex impact damage field. In this paper, compressive residual strength assessment is investigated using the high-fidelity computational tool BSAMTM. The experimental impact damage was mapped and modelled at a high-fidelity level, which included ply-by-ply definition of the geometry of the impact indentation, fibre fracture in the plies and delamination in ply interfaces. It was shown that applying a small lateral displacement or ‘pseudo-impact’ step was highly effective in generating matrix cracks in the impact region, which provided a suitably realistic representation of the interconnected damage map through-the-thickness. It was found that inclusion of all damage modes in the post-image damage map at a high-fidelity definition was essential due to the strong degree of interaction between damage modes. The results support improved sustainment of defence platforms, through enhanced predictive capability and understanding.