Mean annual quantities of solar radiation absorbed during various stages of regeneration of a tropical rain forest in the upper Rio Negro valley of Colombia and Venezuela were estimated for the consecutive intervals between clear-cut and 1,3, 10, 20, 35, 60, 80 and 200 years of growth. Forest phytomass and litter fall data from each of these stages were used to calculate the mean annual net dry matter production per unit of absorbed photosynthelically active radiation (PAR), the PAR conversion efficiency. The quantities of PAR absorbed by the forest stands were calculated from the leaf area index values with an extinction coefficient for PAR of 0.74, a PAR albedo of 0.04, and an annual mean incoming PAR of 2.86GJ m-2y-1. Efficiency decreased with increase in successional stage. During the first 10 years of regrowth, the efficiency of conversion of PAR into above-ground phylomass averaged 0.23 g MJ-1, decreasing to 0.07 g MJ-1 over the following 50 years. Inclusion of annual root production in the calculations resulted in a small increase in PAR conversion efficiency; however, efficiency was more than doubled for some periods when the annual leaf and twig lillerfall were included. Efficiency values for above-ground production were much lower than PAR conversion efficiency values estimated for above-ground production of temperate forests.