We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper presents the bit efficiency of 28 GHz digital beamforming in over-the-air (OTA) measurements and simulations for distributed massive multiple-input–multiple-output (D-MIMO) and collocated massive multiple-input–multiple-output (C-MIMO) systems, as well as simulations for a 3.75 GHz small-cell scenario. Under the condition that users are randomly located in the line of sight coverage indoor area and spatially selected from each other by the normalized zero-forcing method, the OTA measured D-MIMO system exhibits an average of 4–7 dB better signal-to-noise ratio compared to C-MIMO when the number of simultaneously connected users “K” approaches the number of transceivers “M.” This means that the D-MIMO system provides higher bit efficiency than the C-MIMO system when K/M is large. Furthermore, the D-MIMO 3.75 GHz simulation predicts a relatively approximate 30% higher maximum efficiency than C-MIMO due to the shorter average distances between user equipment and access points in the D-MIMO system. To the best of the author’s knowledge, an earlier version of this paper has been presented at the 53rd European Microwave Conference as a first report on the 28 GHz OTA measured bit efficiency between C-MIMO and D-MIMO, highlighting D-MIMO’s advantage.
This paper describes the experimental investigation of orthogonal time-frequency space (OTFS) modulation using a 28 GHz multi-user distributed multiple-input multiple-output (D-MIMO) testbed in over-the-air (OTA) and mobility environments to enhance cell throughput in a millimeter-wave band. We build the D-MIMO testbed having newly developed OTFS modulator and demodulator, and measured OTFS signals and orthogonal frequency-division multiplexing (OFDM) signals with up to four user simultaneous connections on an actual office floor. Additionally, the Doppler effect on OTFS signals is mathematically analyzed and is confirmed in the measurements. OTFS indicates higher robustness in time-variant channels than OFDM. The error vector magnitude (EVM) and system throughput of OTFS are −22 dB and 1.9 Gbps with 100 MHz signal bandwidth, respectively. To our knowledge, this is a first paper describing the OTA measurements of EVM, throughput, and spectral efficiency using OTFS modulation on the 28 GHz coherent beamforming system.
A superheterodyne transmission scheme is adopted and analyzed in a 300 GHz wireless point-to-point link. This was realized using two different intermediate frequency (IF) systems. The first uses fast digital synthesis which provides an IF signal centered around a carrier frequency of 10 GHz. The second involves the usage of commercially available mixers, which work as direct up- and down-converters, to generate the IF input and output. The radio frequency components are based on millimeterwave monolithic integrated circuits at a center frequency of 300 GHz. Transmission experiments over distances up to 10 m are carried out. Data rates of up to 60 Gbps using the first IF option and up to 24 Gbps using the second IF option are achieved. Modulation formats up to 32QAM are successfully transmitted. The linearity of this link and of its components is analyzed in detail. Two local oscillators (LOs), a photonics-based source and a commercially available electronic source are employed and compared. This work validates the concept of superheterodyne architecture for integration in a beyond-5G network, supplying important guidelines that have to be taken into account in the design steps of a future wireless system.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.