As the minimum feature size of microelectronic devices shrinks down to 130 nm, copper has been successfully adopted into logic applications.1–3 Copper requires damascene processing, which involves etching features into a dielectric substrate, filling the features with metal, and removing any excess metal. Therefore, chemical—mechanical planarization (CMP) is a key process in the final definition of the inlaid copper wires on a circuit. A second advance in the back-end processing of copper is the changing of the dielectric from SiO2 to a Low-κ material, which allows a thicker layer of dielectric to be used. Low-k dielectric films have much lower mechanical properties than SiO2; consequently, this poses new challenges in developing integration schemes.1,3–8