We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The Bishop property (♗), introduced recently by K. P. Hart, T. Kochanek and the first-named author, was motivated by Pełczyński’s classical work on weakly compact operators on $C(K)$-spaces. This property asserts that certain chains of functions in said spaces, with respect to a particular partial ordering, must be countable. There are two versions of (♗): one applies to linear operators on $C(K)$-spaces and the other to the compact Hausdorff spaces themselves. We answer two questions that arose after (♗) was first introduced. We show that if $\mathscr{D}$ is a class of compact spaces that is preserved when taking closed subspaces and Hausdorff quotients, and which contains no nonmetrizable linearly ordered space, then every member of $\mathscr{D}$ has (♗). Examples of such classes include all $K$ for which $C(K)$ is Lindelöf in the topology of pointwise convergence (for instance, all Corson compact spaces) and the class of Gruenhage compact spaces. We also show that the set of operators on a $C(K)$-space satisfying (♗) does not form a right ideal in $\mathscr{B}(C(K))$. Some results regarding local connectedness are also presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.