Compared with LiCoO2, the dominant cathode material in today's lithium batteries, lithium nickel oxide derivatives [Li(Ni, M)O2, where M – Co, Fe, Al, Mg] offer a higher specific energy at a lower cost. The synthesis and structure of these materials are described. The electrochemical performances of the pure nickel compound and a number of multicomponent systems are assessed. The goals of these fundamental studies are to optimize the synthesis conditions and material composition to achieve good electrochemical reversibility, decrease capacity loss upon cycling, and enhance thermal stability in the deintercalated state in order to improve cell safety.