We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Alik Ismail-Zadeh, Karlsruhe Institute of Technology, Germany,Fabio Castelli, Università degli Studi, Florence,Dylan Jones, University of Toronto,Sabrina Sanchez, Max Planck Institute for Solar System Research, Germany
Abstract: This chapter presents a third-order predictive modelling methodology which aims at obtaining best-estimate results with reduced uncertainties (acronym: 3rd-BERRU-PM) for applications to large-scale models comprising many parameters. The building blocks of the 3rd-BERRU-PM methodology include quantification of third-order moments of the response distribution in the parameter space using third-order adjoint sensitivity analysis (which overcomes the curse of dimensionality), assimilation of experimental data, model calibration, and posterior prediction of best-estimate model responses and parameters with reduced best-estimate variances/covariances for the predicted responses and parameters. Applications of these concepts to an inverse radiation transmission problem, to an oscillatory dynamical model, and to a large-scale computational model involving 21,976 uncertain parameters, respectively, are also presented, thus illustrating the actual computation and impacts of the first-, second-, and third-order response sensitivities to parameters on the expectation, variance, and skewness of the respective model responses.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.