Let $w(z)$ be an arbitrary transcendental solution of the fourth (respectively, second) Painlevé equation. Concerning the frequency of poles in $|z|\le r$, it is shown that $n(r,w)\gg r^2$ (respectively, $n(r,w)\gg r^{3/2}$), from which the growth estimate $T(r,w)\gg r^2$ (respectively, $T(r,w)\gg r^{3/2}$) immediately follows.
AMS 2000 Mathematics subject classification: Primary 34M55; 34M10