Introduction. Their physical and chemical properties make sandy tin tailings unsuitable for agricultural purposes without proper fertilizer and crop management practices. An attempt was made to use these tailings for sustainable production of pineapple using fertilization and irrigation techniques. Therefore, the objective of the study was to determine the effect of ground sucker size and levels of fertilizer used on yield and nutrient accumulation in plant components of pineapple cv. Josapine grown on sandy tin tailings. Materials and methods. Three fertilizer levels (plot 1, plot 2 and plot 3) containing N, P, K, Ca, Mg and Cu in solution and three classes of ground suckers (> 70 cm, 70–40 cm and < 70 cm) were used. They were arranged in a randomized complete block design with three replicates. There were 32 plants in each experimental plot. Each plot received a similar quantity of Fe, B, Mn, Zn and Mo. At harvest, each plant’s parts were divided into fruit, leaves, stem and roots. The dry matter yield and nutrient contents of each pineapple part were analyzed and recorded. Results and discussion. The highest and the lowest amounts of dry matter were 397 g·plant–1 (size > 70 cm) and 96 g·plant–1 (size < 70 cm), respectively. Total dry matter accumulation was greater (26%) for plot 1 than for plots 2 and 3. Substantial amounts of the dry matter accumulation occurred in leaves (45.0%) and fruit (34.0%) and less in stems (16.0%) and roots (5%). A similar pattern was also observed for the total (major and micro-) nutrient accumulation in the plant components. Besides the fruit parameters, the length of the pineapple stem is an important factor affecting the yield of pineapple, either expressed on a fresh (R2 = 0.904***) or dry (R2 = 0.855***) weight basis. Conclusion. Ground sucker size is a very important factor for successful production of a high fruit yield and quality of pineapple planted on sandy tin tailings.