We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Chapter 33 introduces the strong data-processing inequalities (SDPIs), which are quantitative strengthening of the DPIs in Part I. As applications we show how to apply SDPI to deduce lower bounds for various estimation problems on graphs or in distributed settings. The purpose of this chapter is two-fold. First, we want to introduce general properties of the SDPI coefficients. Second, we want to show how SDPIs help prove sharp lower (impossibility) bounds on statistical estimation questions. The flavor of the statistical problems in this chapter is different from the rest of the book in that here the information about the unknown parameter θ is either more “thinly spread” across a high-dimensional vector of observations than in classical X = θ + Z type of models (see spiked Wigner and tree-coloring examples), or distributed across different terminals (as in correlation and mean estimation examples).
This chapter introduces basic ideas of information-theoretic models for distributed statistical inference problems with compressed data, and discusses current and future research directions and challenges in applying these models to various statistical learning problems. In these applications, data are distributed in multiple terminals, which can communicate with each other via limited-capacity channels. Instead of recovering data at a centralized location first and then performing inference, this chapter describes schemes that can perform statistical inference without recovering the underlying data. Information-theoretic tools are borrowed to characterize the fundamental limits of the classical statistical inference problems using compressed data directly. In this chapter, distributed statistical learning problems are first introduced. Then, models and results of distributed inference are discussed. Finally, new directions that generalize and improve the basic scenarios are described.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.