In this work we derive a posteriori error estimates basedon equations residuals for the heat equation with discontinuousdiffusivity coefficients. The estimates are based on a fully discretescheme based on conforming finite elements in each time slab andon the A-stable θ-scheme with 1/2 ≤ θ ≤ 1.Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo40 (2003) 195–212] it is easyto identify a time-discretization error-estimatorand a space-discretization error-estimator. In this work we introduce a similarsplitting for the data-approximation error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math.72 (1996) 313–348; Petzoldt, Adv. Comput. Math.16 (2002) 47–75] we have upper and lower boundswhose ratio is independent of any meshsize, timestep, problem parameter and its jumps.