Determining (1) the direction of causation and (2) the size of causal effects between two constructs is a central challenge of the scientific study of humans. In the early 1990s, researchers in behavioral genetics invented what was termed the direction of causation (DoC) model to address exactly these two concerns. The model claims that for any two traits whose mode of inheritance is sufficiently different, the direction of causation can be ascertained using a sufficiently large genetically informative sample. Using a series of simulation studies, we demonstrate a major challenge to the DoC model, namely that it is extremely sensitive to even tiny amounts of non-shared confounding. Even under ideal conditions for the DoC model (a large sample, N = 10,000), a large causal relationship (e.g., a causal correlation of .50) with very different modes of inheritance between the two traits (e.g., a pure AE model for one trait and a pure CE model for another trait) and a modest degree (correlation of .10) of non-shared confounding between the two traits results in the choice of the wrong causal models and estimating the wrong causal effects.