We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need.
Methods
Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence.
Results
Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age.
Conclusions
We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
The amygdala plays a central role in the fronto-limbic network involved in the processing of emotions. Structural and functional abnormalities of the amygdala have recently been found in schizophrenia, although there are still contradictory results about its reduced or preserved volumes.
Method
In order to address these contradictory findings and to further elucidate the possibly underlying pathophysiological process of the amygdala, we employed structural magnetic resonance imaging (MRI) and diffusion weighted imaging (DWI), exploring amygdalar volume and microstructural changes in 69 patients with schizophrenia and 72 matched healthy subjects, relating these indices to psychopathological measures.
Results
Measuring water diffusivity, the apparent diffusion coefficients (ADCs) for the right amygdala were found to be significantly greater in patients with schizophrenia compared with healthy controls, with a trend for abnormally reduced volumes. Also, significant correlations between mood symptoms and amygdalar volumes were found in schizophrenia.
Conclusions
We therefore provide evidence that schizophrenia is associated with disrupted tissue organization of the right amygdala, despite partially preserved size, which may ultimately lead to abnormal emotional processing in schizophrenia. This result confirms the major role of the amygdala in the pathophysiology of schizophrenia and is discussed with respect to amygdalar structural and functional abnormalities found in patients suffering from this illness.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.