This review article describes the co-evolution of structural biology as a discipline and the Protein Data Bank (PDB), established in 1971 as the first open-access data resource in biology by like-minded structural scientists. As the PDB archive grew in size and scope to encompass macromolecular crystallography, NMR spectroscopy, and cryo-electron microscopy, new technologies were developed to ingest, validate, curate, store, and distribute the information. Community engagement ensured that the needs of structural biologists (data depositors) and data consumers were met. Today, the archive houses more than 230,000 experimentally determined structures of proteins, nucleic acids, and macromolecular machines and their complexes with one another and small-molecule ligands. Aggregate costs of PDB data preservation are ~1% of the cost of structure determination. The enormous impact of PDB data on basic and applied research and education across the natural and medical sciences is presented and highlighted with illustrative examples. Enablement of de novo protein structure prediction (AlphaFold2, RoseTTAfold, OpenFold, etc.) is the most widely appreciated benefit of having a corpus of rigorously validated, expertly curated 3D biostructure data.