Competing patterns are compound patterns that compete to be the first to occur pattern-specific numbers of times. They represent a generalisation of the sooner waiting time problem and of start-up demonstration tests with both acceptance and rejection criteria. Through the use of finite Markov chain imbedding, the waiting time distribution of competing patterns in multistate trials that are Markovian of a general order is derived. Also obtained are probabilities that each particular competing pattern will be the first to occur its respective prescribed number of times, both in finite time and in the limit.