We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We show that Calabi–Yau fibrations over curves are uniformly K-stable in an adiabatic sense if and only if the base curves are K-stable in the log-twisted sense. Moreover, we prove that there are cscK metrics for such fibrations when the total spaces are smooth.
Fujino gave a proof for the semi-ampleness of the moduli part in the canonical bundle formula in the case when the general fibers are K3 surfaces or abelian varieties. We show a similar statement when the general fibers are primitive symplectic varieties. This answers a question of Fujino raised in the same article. Moreover, using the structure theory of varieties with trivial first Chern class, we reduce the question of semi-ampleness in the case of families of K-trivial varieties to a question when the general fibers satisfy a slightly weaker Calabi–Yau condition.
A conic bundle is a contraction
$X\to Z$
between normal varieties of relative dimension
$1$
such that
$-K_X$
is relatively ample. We prove a conjecture of Shokurov that predicts that if
$X\to Z$
is a conic bundle such that X has canonical singularities and Z is
$\mathbb {Q}$
-Gorenstein, then Z is always
$\frac {1}{2}$
-lc, and the multiplicities of the fibres over codimension
$1$
points are bounded from above by
$2$
. Both values
$\frac {1}{2}$
and
$2$
are sharp. This is achieved by solving a more general conjecture of Shokurov on singularities of bases of lc-trivial fibrations of relative dimension
$1$
with canonical singularities.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.