Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-20T06:55:54.566Z Has data issue: false hasContentIssue false

A REMARK ON FUJINO’S WORK ON THE CANONICAL BUNDLE FORMULA VIA PERIOD MAPS

Published online by Cambridge University Press:  02 December 2024

HYUNSUK KIM*
Affiliation:
Department of Mathematics University of Michigan, Ann Arbor 530 Church Street Ann Arbor, Michigan United States

Abstract

Fujino gave a proof for the semi-ampleness of the moduli part in the canonical bundle formula in the case when the general fibers are K3 surfaces or abelian varieties. We show a similar statement when the general fibers are primitive symplectic varieties. This answers a question of Fujino raised in the same article. Moreover, using the structure theory of varieties with trivial first Chern class, we reduce the question of semi-ampleness in the case of families of K-trivial varieties to a question when the general fibers satisfy a slightly weaker Calabi–Yau condition.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ambro, F., Shokurov’s boundary property , J. Differ. Geom. 67 (2004), no. 2, 229255.CrossRefGoogle Scholar
Ascher, K., Bejleri, D., Blum, H., DeVleming, K., Inchiostro, G., Liu, Y. and Wang, X., Moduli of boundary polarized Calabi–Yau pairs, preprint, arXiv:2307.06522, 2023.Google Scholar
Baily, W. L. Jr. and Borel, A., Compactification of arithmetic quotients of bounded symmetric domains , Ann. of Math. 2 (1966), no. 84, 442528.Google Scholar
Beauville, A., Variétés Kähleriennes dont la première classe de Chern Est nulle , J. Differ. Geom. 18 (1983), no. 4, 755782.CrossRefGoogle Scholar
Beauville, A., Symplectic singularities , Invent. Math. 139 (2000), no. 3, 541549.CrossRefGoogle Scholar
Borel, A., Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem , J. Differential Geom. 6 (1972), 543560.CrossRefGoogle Scholar
Corti, A., editor, Flips for 3-folds and 4-folds, Oxford Lecture Series in Mathematics and Its Applications, Vol. 35, Oxford University Press, Oxford, 2007.Google Scholar
Druel, S., A decomposition theorem for singular spaces with trivial canonical class of dimension at most five , Invent. Math. 211 (2018), no. 1, 245296.CrossRefGoogle Scholar
Filipazzi, S., On a generalized canonical bundle formula and generalized adjunction , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020), 11871221.Google Scholar
Fujino, O., A canonical bundle formula for certain algebraic fiber spaces and its applications , Nagoya Math. J. 172 (2003), 129171.CrossRefGoogle Scholar
Fujino, O., Fundamental properties of basic slc-trivial fibrations I , Publ. Res. Inst. Math. Sci. 58 (2022), no. 3, 473526.CrossRefGoogle Scholar
Fujino, O. and Gongyo, Y., On the moduli b-divisors of lc-trivial fibrations , Ann. Inst. Fourier (Grenoble) 64 (2014), no. 4, 17211735.CrossRefGoogle Scholar
Fujino, O. and Mori, S., A canonical bundle formula , J. Differ. Geom. 56 (2000), no. 1, 167188.CrossRefGoogle Scholar
Fujita, T., Zariski decomposition and canonical rings of elliptic threefolds , J. Math. Soc. Japan 38 (1986), no. 1, 1937.CrossRefGoogle Scholar
Greb, D., Guenancia, H., and Kebekus, S., Klt varieties with trivial canonical class: Holonomy, differential forms, and fundamental groups , Geom. Topol. 23 (2019), no. 4, 20512124.CrossRefGoogle Scholar
Greb, D., Kebekus, S., Kovács, S. J., and Peternell, T., Differential forms on log canonical spaces , Publ. Math. Inst. Hautes Études Sci. 114 (2011), 87169.CrossRefGoogle Scholar
Greb, D., Kebekus, S. and Peternell, T., “Singular spaces with trivial canonical class” in Minimal Models and Extremal Rays (Kyoto, 2011), Advanced Studies in Pure Mathematics, Vol. 70, Mathematical Society of Japan, Tokyo, 2016, pp 67113.Google Scholar
Höring, A. and Peternell, T., Algebraic integrability of foliations with numerically trivial canonical bundle , Invent. Math. 216 (2019), no. 2, 395419.CrossRefGoogle Scholar
Huybrechts, D. and Nieper-Wisskirchen, M., Remarks on derived equivalences of Ricci-flat manifolds , Math. Z. 267 (2011), no. 3-4, 939963.CrossRefGoogle Scholar
Katz, N. M., “The regularity theorem in algebraic geometry” in Actes du Congrès International Des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars Éditeur, Paris, 1971, pp. 437443.Google Scholar
Kawamata, Y., “Subadjunction of log canonical divisors for a subvariety of codimension 2” in Birational Algebraic Geometry (Baltimore, MD, 1996), Contemporary Mathematics, Vol. 207, American Mathematical Society, Providence, RI, 1997, pp. 7988.Google Scholar
Kawamata, Y., Subadjunction of log canonical divisors II , Amer. J. Math. 120 (1998), no. 5, 893899.CrossRefGoogle Scholar
Kodaira, K., On the structure of compact complex analytic surfaces I , Amer. J. Math. 86 (1964), 751798.CrossRefGoogle Scholar
Kollár, J., “Kodaira’s canonical bundle formula and adjunction” in Flips for 3-folds and 4-folds, Oxford Lecture Series in Mathematics and Its Applications, Vol. 35, Oxford University Press, Oxford, 2007, pp. 134162.CrossRefGoogle Scholar
Peters, C. A. M. and Steenbrink, J. H. M., Mixed Hodge Structures, Ergebnisse der Mathematik Und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Vol. 52, Springer, Berlin, 2008.Google Scholar
Prokhorov, Y. G. and Shokurov, V. V., Towards the second main theorem on complements , J. Algebraic Geom. 18 (2009), no. 1, 151199.Google Scholar
Schmid, W., Variation of Hodge structure: The singularities of the period mapping , Invent. Math. 22 (1973), 211319.CrossRefGoogle Scholar
Verbitsky, M., Cohomology of compact hyper-Kähler manifolds and its applications , Geom. Funct. Anal. 6 (1996), no. 4, 601611.CrossRefGoogle Scholar