We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For any positive integer n, let $\sigma (n)$ be the sum of all positive divisors of n. We prove that for every integer k with $1\leq k\leq 29$ and $(k,30)=1,$
for all $K\in \mathbb {N},$ which gives a positive answer to a problem posed by Pongsriiam [‘Sums of divisors on arithmetic progressions’, Period. Math. Hungar. 88 (2024), 443–460].
We prove an asymptotic formula for the sum $\sum _{n\leq N}d(n^{2}-1)$, where $d(n)$ denotes the number of divisors of $n$. During the course of our proof, we also furnish an asymptotic formula for the sum $\sum _{d\leq N}g(d)$, where $g(d)$ denotes the number of solutions $x$ in $\mathbb{Z}_{d}$ to the equation $x^{2}\equiv 1~(\text{mod}~d)$.
We study positive integers $n$ such that $n\phi (n)\equiv 2\hspace{0.167em} {\rm mod}\hspace{0.167em} \sigma (n)$, where $\phi (n)$ and $\sigma (n)$ are the Euler function and the sum of divisors function of the positive integer $n$, respectively. We give a general ineffective result showing that there are only finitely many such $n$ whose prime factors belong to a fixed finite set. When this finite set consists only of the two primes $2$ and $3$ we use continued fractions to find all such positive integers $n$.
A general analytic scheme for Poisson approximation to discrete distributions is studied in which the asymptotic behaviours of the generalized total variation, Fortet-Mourier (or Wasserstein), Kolmogorov and Matusita (or Hellinger) distances are explicitly characterized. Applications of this result include many number-theoretic functions and combinatorial structures. Our approach differs from most of the existing ones in the literature and is easily amended for other discrete approximations; arithmetic and combinatorial examples for Bessel approximation are also presented. A unified approach is developed for deriving uniform estimates for probability generating functions of the number of components in general decomposable combinatorial structures, with or without analytic continuation outside their circles of convergence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.