We consider the following ordering for stochastic processes as introduced by Irle and Gani (2001). A process (Yt)t is said to be slower in level crossing than a process (Zt)t if it takes (Yt)t stochastically longer than (Zt)t to exceed any given level. In Irle and Gani (2001), this ordering was investigated for Markov chains in discrete time. Here these results are carried over to semi-Markov processes with particular attention to birth-and-death processes and also to Wiener processes.