In the problem of automatically controlling a wheeled vehicle so that a given reference point on the vehicle follows a prescribed path, several factors determine how the task can be accomplished; they are the shape of the path, the initial orientation angle, the steering angle limit and the position of the reference point on the vehicle. If the required steering angle exceeds the limit set by the steering mechanism or the required orientation angle is discontinuous at any point along the path, then the path cannot be followed. This paper investigates this motion feasibility problem, taking steering angle limit into consideration. First of all, we determine the dependence of the continuity of the orientation angle, steering angle and their derivatives on the continuity of the reference path and its derivatives, then discuss .the relationship between the steering angle limit and the feasible deviation angle intervals. Furthermore, we analyze in detail two typical motions, namely straight line motion and circular motion; some simulation results have been given based on a practical vehicle dimension.