SrTiO3 is an important photocatalyst for hydrogen evolution under solar light, a promising way to solve energy shortage. However, a rapid and efficient method to synthesize high-performance SrTiO3 used for this purpose still remains a challenge. In this work, we successfully prepared SrTiO3 catalyst with narrowed band gap through a rapid laser-melting method of a limited reaction time to seconds. The prepared SrTiO3 catalyst, which has a band gap of 3.05 eV, presents enhanced photocatalytic performance for hydrogen evolution under visible light. The evolution rate of laser-melted SrTiO3 is approximately 3.5 times higher than that of pristine SrTiO3. In addition, the magnetism in laser-melted SrTiO3 is also enhanced, which could not be observed in pristine SrTiO3, confirming the defective structure of the obtained laser-melted SrTiO3. The proposed laser-melting method will be a promising way to rapidly and efficiently synthesize homogeneous, solar-driven SrTiO3 photocatalyst for hydrogen evolution with rich defects and thus high-performance.