We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Recent progress on rare-earth doped polycrystalline YAG transparent ceramics has made them an alternative novel solid-state laser gain material. In this paper we present results of our research on polycrystalline RE:YAG transparent ceramics. High optical quality YAG ceramics doped with various rare-earth (RE) ions such as ${\rm Nd}^{3+}$, ${\rm Yb}^{3+}$, ${\rm Er}^{3+}$, ${\rm Tm}^{3+}$, and ${\rm Ho}^{3+}$ have been successfully fabricated using the solid-state reactive sintering method. Highly efficient laser oscillations of the fabricated ceramics are demonstrated.
A Nd:YAG laser oscillator Q-switched and mode locked via a nonlinear
mirror based on stimulated Brillouin scattering (SBS) and aided by an
acousto optical modulator (AOM) has been realised. A rate equation model
and a round trip model are used to describe the longitudinal mode
dynamics. Parameter variations of the nonlinear SBS mirror and the loss
modulating AOM in the resonator are investigated with regard to their
effect on the pulse duration and spectra of the pulses.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.