We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove that every for every complete lattice-ordered effect algebra E there exists an orthomodular lattice O(E) and a surjective full morphism øE: O(E) → E which preserves blocks in both directions: the (pre)imageofa block is always a block. Moreover, there is a 0, 1-lattice embedding : E → O(E).
We introduce perfect effect algebras and we show that every perfect algebra is an interval in the lexicographical product of the group of all integers with an Abelian directed interpolation po-group. To show this we introduce prime ideals of effect algebras with the Riesz decomposition property (RDP). We show that the category of perfect effect algebras is categorically equivalent to the category of Abelian directed interpolation po-groups. Moreover, we prove that any perfect effect algebra is a subdirect product of antilattice effect algebras with the RDP.
The notion of a strongly dense inner product space is introduced and it is shown that, for such an incomplete space $S$ (in particular, for each incomplete hyperplane of a Hilbert space), the system $F(S)$ of all orthogonally closed subspaces of $S$ is not stateless, and the state-space of $F(S)$ is affinely homeomorphic to the face consisting of the free states on the projection lattice corresponding to the completion of $S$. The homeomorphism is determined by the extension of the states. In particular, when $S$ is complex, the state-space of $F(S)$ is affinely homeomorphic to the state-space of the Calkin algebra associated with $\skew3\overline S$.
We show that any pseudo MV-algebra is isomorphic with an interval Γ(G, u), where G is an ℓ-group not necessarily Abelian with a strong unit u. In addition, we prove that the category of unital ℓ-groups is categorically equivalent with the category of pseudo MV-algebras. Since pseudo MV-algebras are a non-commutative generalization of MV-algebras, our assertions generalize a famous result of Mundici for a representation of MV-algebras by Abelian unital ℓ-groups. Our methods are completely different from those of Mundici. In addition, we show that any Archimedean pseudo MV-algebra is an MV-algebra.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.