We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter is intended to review concepts that the reader has some familiarity with and introduce high level descriptions of linear marine systems analysis. An initial discussion on the similarity between mechanical vibration equations of motion and marine dynamical systems is made. Mechanical vibrations are defined as vibrations in the absence of fluids. Examples of static and dynamic coupling between the various modes of motion or degrees of freedom are presented. The differences between frequency domain and time domain representations are given by introducing the concept of response amplitude operators (RAO’s). Complex arithmetic and linear, second order differential equations are briefly reviewed. Two examples of mechanical vibrations that are relevant to marine dynamics are developed and solved. The first example has to do with base excitation, similar to what a high speed planing craft may experience in long waves. The second example addresses one method for vibration isolation/suppression, that may, or may not, be useful in shock/impact mitigation schemes.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.