We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We define the notion of a completely determined Borel code in reverse mathematics, and consider the principle $CD - PB$, which states that every completely determined Borel set has the property of Baire. We show that this principle is strictly weaker than $AT{R_0}$. Any ω-model of $CD - PB$ must be closed under hyperarithmetic reduction, but $CD - PB$ is not a theory of hyperarithmetic analysis. We show that whenever $M \subseteq {2^\omega }$ is the second-order part of an ω-model of $CD - PB$, then for every $Z \in M$, there is a $G \in M$ such that G is ${\rm{\Delta }}_1^1$-generic relative to Z.
We prove that it is relatively consistent with $ZFC$ that in any perfect Polish space, for every nonmeager set $A$ there exists a nowhere dense Cantor set $C$ such that $A\,\cap \,C$ is nonmeager in $C$. We also examine variants of this result and establish a measure theoretic analog.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.